Custom Python code for calculating the Probability of Profit (POP) for options trading strategies using Monte Carlo Simulations.

Related tags

Miscellaneouspoptions
Overview

poptions

Custom Python code for calculating the Probability of Profit (POP) for options trading strategies using Monte Carlo Simulations. The Monte Carlo Simulation runs thousands of individual stock price simulations and uses the data from these simulations to average out a POP number.

Unlike other calculators, poptions lets you specify a target profit, such as a percentage of maximum profit or a multiple of the debit paid, that will trigger your position to close when it's reached in the simulation. Additionally, you will specify the 'closing days', which refers to the number of calendar days that will pass until you close the position (assuming the target profit wasn't reached to trigger the closing).

In simpler words: the estimated POP from poptions refers to the probability of hitting a specified target profit within a specified number of calendar days.

Poptions lets you add MULTIPLE combinations of target profits and closing days!

Poptions also outputs an Average Days To Close (ADTC) number. This is the estimated average number of calendar days you will have to wait until you reach your target profit, assuming that the POP ended up in your favor.

Poptions can also be used to evaluate existing trades (see below).

Disclaimer: poptions has not been vetted by any certified professional or expert. The calculations do not constitute investment advice. They are for educational purposes only. Calculations may contain mistakes and are made using models with inherent limitations that are highlighted below. Use this tool at your own risk.

How does it work?

A great video explaining the underlying logic is shown here: https://www.tastytrade.com/shows/the-skinny-on-options-modeling/episodes/probability-of-50-profit-12-17-2015

In short, thousands of stock price simulations are executed in which the price change per day is modeled according to Geometric Brownian Motion. The Black-Scholes Model is then used to estimate the price of an options contract (or multiple contracts depending on the strategy used) per day in each simulation. The number of simulations in which the selected profit criteria is met (e.g. 50% of maximum profit within 20 calendar days) is divided by the total number of simulations, giving you an estimate of the POP. A similar averaging is done to acquire the ADTC.

poptions makes the following assumptions for its simulations:

  • The stock price volatility is equal to the implied volatility and remains constant.
  • Geometric Brownian Motion is used to model the stock price.
  • Risk-free interest rates remain constant.
  • The Black-Scholes Model is used to price options contracts.
  • Dividend yield is not considered.
  • Commissions are not considered.
  • Assignment risks are not considered.
  • Earnings date and stock splits are not considered.

Of course, not all of these assumptions are true in real life and so there are limitations to this approach. For example, it's highly unlikely that the stock price volatility remains constant for several days. Thus, one should take these results with a grain of salt.

How to use poptions

The requirements.txt file lists all the python packages (and their versions) that need to be installed for poptions to work.

A working example of a Call Credit Spread strategy is located in the poptions_examples.py file, as shown:

underlying = 137.31     # Current underlying price
short_strike = 145      # Short strike price
short_price = 1.13      # Short call price
long_strike = 150
long_price = 0.4
rate = 0        # Annualized risk-free rate as a percentage
sigma = 26.8        # Implied Volatility as a percentage
days_to_expiration = 45     # Calendar days left till expiration
percentage_array = [20, 30, 40]  # Percentage of maximum profit that will trigger the position to close
closing_days_array = [21, 22, 23]       # Max calendar days passed until position is closed
trials = 2000       # Number of independent trials

print("Call Credit Spread: ", poptions.callCreditSpread(underlying, sigma, rate, trials, days_to_expiration,
                                                        closing_days_array, percentage_array, short_strike,
                                                        short_price, long_strike, long_price))

The comments in the code should be self-explanatory, but the percentage_array, closing_days_array, and trials variables require some extra clarification:

  • The first elements in percentage_array and closing_days_array are 20 and 21, respectively.
    This means that our target profit is 20% of maximum profit (0.2 * (short_price - long_price) = $ 0.146). The Monte Carlo Simulation will consider each individual simulation (renamed to trial here) a success if this target profit is achieved. If this target profit is not reached within 21 calendar days, it will be considered a failure.

  • You can add multiple combinations of target profits and closing days by simply adding extra elements to percentage_array and closing_days_array! In the above example, we tell the Simulation to also evaluate 30% and 40% of maximum profits for 22 and 23 calendar days, respectively.

  • Increasing the number of trials will improve the accuracy of your estimations at the cost of a slower simulation.

Some Extra Notes:

  • Running poptions.callCreditSpread() will not output consistent results. There will always be some variance from its previous runs. This is because a new simulation is started from scratch for every run. The amount of variance depends on how high trials is set: More trials -> higher accuracy (less variance).

  • For the Long Call and Long Put strategies, percentage_array is replaced with multiple_array. This means that the target profit is now defined as a multiple of the debit that you paid to open the position. For example, if you bought a call option for $1.00, a value of [2] in multiple_array means that your target profit is 2 * $ 1.00 = $ 2.00.

  • You can evaluate existing trades with poptions! Type the net credit received into ONE of the short price variables, and leave the rest of the price variables at 0. Fill out all other variables with present data. Example: Net credit received was $0.73 for a Call Credit Spread, so short_price is 0.73 and long_price is 0. All other variables are filled with present data. For strategies where a net debit is paid like Debit Spreads, the debit paid should be in ONE of the long price variables, and leave the rest of the price variables at 0.

Entering existing trades is NOT supported for Covered Calls unless the current underlying price is the same as it was when you opened the position! This is because the underlying variable refers to the purchase price of the stock when you opened the position.

Running poptions_examples.py gives you the following output:

Call Credit Spread:  {'pop': [61.3, 57.65, 52.55], 'pop_error': [2.81, 2.85, 2.88], 'avg_dtc': [8.87, 10.3, 11.41], 'avg_dtc_error': [0.39, 0.43, 0.45]}
  • pop is the probability of reaching the target profit within the closing days. The first element in pop corresponds to the first elements in percentage_array and closing_days_array.

  • pop_error is the error range for pop. In the above example, for the first element, there is a 99% chance that the 'true' value for pop is between 58.49 (61.3 - 2.81) and 64.11 (61.3 + 2.81). Of course, this error range gets smaller as trials is increased.

  • avg_dtc refers to the Average Days To Close (ADTC).

  • avg_dtc_error is the error range for avg_dtc.

If avg_dtc falls on a weekend/holiday when the markets are closed, then you can assume that the closing date is on the following business/trading day.

SPEED BOOST with Numba!

If you're looking to potentially speed up simulations by 100x, the Numba python package can help you out! Numba translates Python functions to optimized machine code at runtime using the industry-standard LLVM compiler library. Numba-compiled numerical algorithms in Python can approach the speeds of C or FORTRAN.

Using Numba is shockingly easy. It requires making very little modifications to our code. Follow these steps to speed up poptions.callCreditSpread() in poptions_examples.py with Numba:

Open the CallCreditSpread.py file. Add the following decorator to this function:

@jit(nopython=True, cache=True)
def bsm_debit(sim_price, strikes, rate, time_fraction, sigma):
    ...

Open the MonteCarlo.py file. Add the decorator to this function:

@jit(nopython=True, cache=True)
def monteCarlo(underlying, rate, sigma, days_to_expiration, closing_days_array, trials, initial_credit,
                   min_profit, strikes, bsm_func):
    ...

Open the BlackScholes.py file. Add the decorator to the functions:

@jit(nopython=True, cache=True)
def blackScholesPut(s, k, rr, tt, sd):
    ...
    
@jit(nopython=True, cache=True)
def blackScholesCall(s, k, rr, tt, sd):
    ...

You're good to go, but you MUST account for the following: The first time you call poptions.callCreditSpread() will be slow (around a few seconds) since it triggers a compilation step for Numba. The second poptions.callCreditSpread() call is where you'll see the performance gains. Here's a comparison of the speeds between calls:

First poptions.callCreditSpread() call WITH Numba Compilation: 1.756 seconds
Second poptions.callCreditSpread() call WITHOUT Numba Compilation: 0.0064 seconds

Donations

If you like the project and feel like donating some crypto to the author(s), you can do so here:

BTC: 16xbCyVZB3x3PNFs1qQEXGsNgtTd4BKE6z

LTC: Lg1d1VEd5DMQzycZTSSeDEc59yomwDwX8j

Thank you!

License

MIT License

A description of this license can be found in the LICENSE.txt file.

The only purpose of a byte-sized application is to help you create .desktop entry files for downloaded applications.

Turtle 🐢 The only purpose of a byte-sized application is to help you create .desktop entry files for downloaded applications. As of usual with elemen

TenderOwl 14 Dec 29, 2022
A Python version of Canvacord

A copy of canvacord made in python! Installation Run any of these commands in terminal: Mac / Linux pip install canvacord Windows python -m pip insta

10 Mar 28, 2022
Catalogue CRUD Application

This Python program creates a relational SQL database hosted on the Snowflake platform, then opens a CRUD GUI to manipulate and view the data. In this application, it is used as a book catalogue. CUR

0 Dec 13, 2022
A Notifier Program that Notifies you to relax your eyes Every 15 Minutes👀

Every 15 Minutes is an application that is used to Notify you to Relax your eyes Every 15 Minutes, This is fully made with Python and also with the us

FSP Gang s' Admin 1 Nov 03, 2021
PSP (Python Starter Package) is meant for those who want to start coding in python but are new to the coding scene.

Python Starter Package PSP (Python Starter Package) is meant for those who want to start coding in python, but are new to the coding scene. We include

Giter/ 1 Nov 20, 2021
A browser login credentials thief for windows and Linux

Thief 🦹🏻 A browser login credentials thief for windows and Linux Python script to decrypt login credentials from browsers in windows or linux Decryp

Ash 1 Dec 13, 2021
Originally used during Marketplace.tf's open period, this program was used to get the profit of items bought with keys and sold for dollars.

Originally used during Marketplace.tf's open period, this program was used to get the profit of items bought with keys and sold for dollars. Practically useless for me now, but can be used as an exam

BoggoTV 1 Dec 11, 2021
Developing a python based app prototype with KivyMD framework for a competition :))

Developing a python based app prototype with KivyMD framework for a competition :))

Jay Desale 1 Jan 10, 2022
urlwatch is intended to help you watch changes in webpages and get notified of any changes.

urlwatch is intended to help you watch changes in webpages and get notified (via e-mail, in your terminal or through various third party services) of any changes.

Thomas Perl 2.5k Jan 08, 2023
PwnDatas-DB-Project(PDDP)

PwnDatas-DB-Project PwnDatas-DB-Project(PDDP) 安裝依賴: pip3 install pymediawiki 使用: cd /opt git https://github.com/JustYoomoon/PwnDatas-DB-Project.git c

21 Jul 16, 2021
You will need to install a few python packages for this one.

Features Bait support Auto repair will repair every 10 catches Anti detection (still a work in progress) but using random times and click positions Pr

12 Sep 21, 2022
Password manager using MySQL and Python 3.10.2

Password Manager Password manager using MySQL and Python 3.10.2 Installation Install my-project with github git clone https://github.com/AyaanSiddiq

1 Feb 18, 2022
SWS Filters App - SWS Filters App With Python

SWS Filters App Fun 😅 ... Fun 😅 Click On photo and see 😂 😂 😂 Your Video rec

Sagar Jangid 3 Jul 07, 2022
Excel cell checker with python

excel-cell-checker Description This tool checks a given .xlsx file has the struc

Paul Aumann 1 Jan 04, 2022
This repository contains code for building education startup.

Learning Management System Overview It's the code for EssayBrain, a tool for teacher that automatically grades and validates essays. In order to valid

Shyam Das Shrestha 1 Nov 21, 2021
Hello, Welcome to this repo. don't forget to read guidelines in readme.md

Hacktoberfest_2021 If you looking for your first contribution, we are here to help. Just create a simple program using any language you like in our fo

Wafa Rifqi Anafin 117 Dec 14, 2022
This repository contains various tools useful for offensive operations (reversing, etc) regarding the PE (Portable Executable) format

PE-Tools This repository contains various tools useful for offensive operations (reversing, etc) regarding the PE (Portable Executable) format Install

stark0de 4 Oct 13, 2022
In this project, we are going to display the battery notification and the time left for the battery to drain out using the battery capacity value.

In this project, we are going to display the battery notification and the time left for the battery to drain out using the battery capacity value.

Ritoban Biswas 1 Dec 20, 2021
Automated rop chain generation

This is the accompanying code to the blog post talking about automated rop chain generation. Build the test file with: make Install the dependencies:

Christopher Roberts 14 Nov 22, 2022
User management system (UMS), has the primary purpose of connecting to an Active Directory (AD)

💿 Sistema de Gerenciamento de Usuário (SGU) 📚 Sobre o projeto Sistema de gerenciamento de usuários (SGU), tem o objetivo primário de se conectar a u

Patrick Viegas 2 Feb 25, 2022