Async-first dependency injection library based on python type hints

Overview

Dependency Depression

Async-first dependency injection library based on python type hints

Quickstart

First let's create a class we would be injecting:

class Test:
    pass

Then we should create instance of container and register our Test class in it, we would use Callable provider that would simply call our class, since classes are also callables!

from dependency_depression import Depression, Callable

container = Depression()
container.register(Test, Callable(Test))

Then we should create a context and resolve our class from it:

with container.sync_context() as ctx:
    ctx.resolve(Test)
    # < __main__.Test>

Injecting

To mark parameters for injection mark them with typing.Annotated and Inject marker

from typing import Annotated
from dependency_depression import Callable, Depression, Inject


def create_number() -> int:
    return 42


def create_str(number: Annotated[int, Inject]) -> str:
    return str(number)

container = Depression()
container.register(str, Callable(create_str))
container.register(int, Callable(create_number))

with container.sync_context() as ctx:
    string = ctx.resolve(str)
    print(string, type(string))
    # 42 
   

Providers

When creating a provider you should specify the type it returns, but it can be inferred from class type or function return type:

from dependency_depression import Callable

provider = Callable(int)
# Is the same as Callable(factory=int, impl=int)
assert provider.provide_sync() == 0

Example using factory function, impl is inferred from return type hint:

from dependency_depression import Callable


def create_foo() -> str:
    return "foo"


provider = Callable(create_foo)
assert provider.provide_sync() == "foo"
assert provider.impl is str

This all comes into play when you have multiple implementations for base class and want to retrieve individual providers from a container,
let's register two concrete classes under same interface:

from dependency_depression import Depression, Callable


class Base:
    pass


class ConcreteA(Base):
    pass


class ConcreteB(Base):
    pass


container = Depression()
container.register(Base, Callable(ConcreteA))
container.register(Base, Callable(ConcreteB))

with container.sync_context() as ctx:
    a = ctx.resolve(Base, ConcreteA)  # <__main__.ConcreteA>
    b = ctx.resolve(Base, ConcreteB)  # <__main__.ConcreteB>
    
    # This would raise an error since we have two classes registered as `Base`
    ctx.resolve(Base)

If you have multiple classes registered under same interface you can specify concrete class using Impl marker:

from typing import Annotated
from dependency_depression import Inject, Impl


class Injectee:
    def __init__(
        self,
        a: Annotated[Base, Inject, Impl[ConcreteA]],
        b: Annotated[Base, Inject, Impl[ConcreteB]],
    ):
        pass

You can also just register concrete classes instead:

container.register(ConcreteA, Callable(ConcreteA))
container.register(ConcreteB, Callable(ConcreteB))

class Injectee:
    def __init__(
        self,
        a: Annotated[ConcreteA, Inject],
        b: Annotated[ConcreteB, Inject],
    ):
        pass

Generics

Dependency Depression can also be used with Generics:

T: raise NotImplementedError class UserRepository(IRepository[User]): def get(self, identity: int) -> User: return User(id=identity, username="Username") class ItemRepository(IRepository[Item]): def get(self, identity: int) -> Item: return Item(id=identity, title="Title") class Injectee: def __init__( self, user_repository: Annotated[IRepository[User], Inject], item_repository: Annotated[IRepository[Item], Inject], ): self.user_repository = user_repository self.item_repository = item_repository container = Depression() container.register(IRepository[User], Callable(UserRepository)) container.register(IRepository[Item], Callable(ItemRepository)) container.register(Injectee, Callable(Injectee)) with container.sync_context() as ctx: injectee = ctx.resolve(Injectee) injectee.user_repository # < __main__.UserRepository> injectee.item_repository # <__main__.ItemRepository>">
import dataclasses
from typing import Generic, TypeVar, Annotated

from dependency_depression import Inject, Depression, Callable

T = TypeVar("T")


@dataclasses.dataclass
class User:
    id: int
    username: str


@dataclasses.dataclass
class Item:
    id: int
    title: str


class IRepository(Generic[T]):
    def get(self, identity: int) -> T:
        raise NotImplementedError


class UserRepository(IRepository[User]):
    def get(self, identity: int) -> User:
        return User(id=identity, username="Username")

    
class ItemRepository(IRepository[Item]):
    def get(self, identity: int) -> Item:
        return Item(id=identity, title="Title")

    
class Injectee:
    def __init__(
        self,
        user_repository: Annotated[IRepository[User], Inject],
        item_repository: Annotated[IRepository[Item], Inject],
    ):
        self.user_repository = user_repository
        self.item_repository = item_repository


container = Depression()
container.register(IRepository[User], Callable(UserRepository))
container.register(IRepository[Item], Callable(ItemRepository))
container.register(Injectee, Callable(Injectee))

with container.sync_context() as ctx:
    injectee = ctx.resolve(Injectee)
    injectee.user_repository
    # < __main__.UserRepository>
    injectee.item_repository
    # <__main__.ItemRepository>

Context

Context as meant to be used within application or request scope, it keeps instances cache and an ExitStack to close all resources.

Cache

Context keeps cache of all instances, so they won't be created again, unless use_cache=False or NoCache is used.

In this example passing use_cache=False would cause context to create instance of Test again, however it wouldn't be cached:

from dependency_depression import Callable, Depression


class Test:
    pass


container = Depression()
container.register(Test, Callable(Test))

with container.sync_context() as ctx:
    first = ctx.resolve(Test)
    
    assert first is not ctx.resolve(Test, use_cache=False)
    # first is still cached in context
    assert first is ctx.resolve(Test)

Closing resources using context managers

Context would also use functions decorated with contextlib.contextmanager or contextlib.asyncontextmanager, but it won't use other instances of ContextManager.
Note that you're not passing impl parameter should specify return type using Iterable, Generator or their async counterparts - AsyncIterableand AsyncGenerator:

import contextlib
from typing import Iterable

from dependency_depression import Depression, Callable


@contextlib.contextmanager
def contextmanager() -> Iterable[int]:
    yield 42


class ContextManager:
    def __enter__(self):
        # This would never be called
        raise ValueError

    def __exit__(self, exc_type, exc_val, exc_tb):
        pass


container = Depression()

# Without return type hint you can specify impl parameter:
# container.register(int, Callable(contextmanager, int))
container.register(int, Callable(contextmanager))
container.register(ContextManager, Callable(ContextManager))

with container.sync_context() as ctx:
    number = ctx.resolve(int)  # 42
    ctx_manager = ctx.resolve(ContextManager) # __enter__ would not be called
    with ctx_manager:
        ...
        # Oops, ValueError raised

In case you need to manage lifecycle of your objects you should wrap them in a context manager:

import contextlib
from typing import AsyncGenerator

from dependency_depression import Callable, Depression
from sqlalchemy.ext.asyncio import AsyncSession


@contextlib.asynccontextmanager
async def get_session() -> AsyncGenerator[AsyncSession, None]:
    session = AsyncSession()
    async with session:
        try:
            yield session
        except Exception:
            await session.rollback()
            raise

container = Depression()
container.register(AsyncSession, Callable(AsyncSession))

@Inject decorator

@inject decorator allows you to automatically inject parameters into functions:

from typing import Annotated

from dependency_depression import Callable, Depression, Inject, inject


@inject
def injectee(number: Annotated[int, Inject]):
    return number


container = Depression()
container.register(int, Callable(int))

with container.sync_context():
    print(injectee())
    # 0

Without active context number parameter would not be injected:

injectee()
# TypeError: injectee() missing 1 required positional argument: 'number'

But you still can use your function just fine

print(injectee(42))

You can pass parameters even if you have an active context:

with container.sync_context():
    print(injectee())  # 0, injected
    print(injectee(42))  # 42, provided by user

Usage with Asyncio

Dependency Depression can be used in async context, just use context instead of sync_context:

import asyncio

from dependency_depression import Callable, Depression


async def get_number() -> int:
    await asyncio.sleep(1)
    return 42


async def main():
    container = Depression()
    container.register(int, Callable(get_number))
    async with container.context() as ctx:
        number = await ctx.resolve(int)
        assert number == 42


if __name__ == '__main__':
    asyncio.run(main())

Async context also supports both sync and async context managers and factory functions.

Owner
Doctor
Doctor
A price calculator for multiple things

Price Calculator A price calculator for multiple things Example I have 0.0567kg diamond. The price of diamond in kg is: $4500. Then it says: The price

Abel 1 Nov 26, 2021
A simple API to upload notes or files to KBFS

This API can be used to upload either secure notes or files to a secure KeybaseFS folder.

Dakota Brown 1 Oct 08, 2021
Margin Calculator - Personally tailored investment tool

Margin Calculator - Personally tailored investment tool

1 Jul 19, 2022
a really simple bot that send you memes from reddit to whatsapp

a really simple bot that send you memes from reddit to whatsapp want to use use it? install the dependencies with pip3 install -r requirements.txt the

pai 10 Nov 28, 2021
A Notifier Program that Notifies you to relax your eyes Every 15 Minutes👀

Every 15 Minutes is an application that is used to Notify you to Relax your eyes Every 15 Minutes, This is fully made with Python and also with the us

FSP Gang s' YT 2 Nov 11, 2021
Wagtail + Lottie is a Wagtail package for playing Adobe After Effects animations exported as json with Bodymovin.

Wagtail Lottie Wagtail + Lottie is a Wagtail package for playing Adobe After Effects animations exported as json with Bodymovin. Usage Export your ani

Alexis Le Baron 7 Aug 18, 2022
pyreports is a python library that allows you to create complex report from various sources

pyreports pyreports is a python library that allows you to create complex reports from various sources such as databases, text files, ldap, etc. and p

Matteo Guadrini aka GU 78 Dec 13, 2022
Plux - A dynamic code loading framework for building plugable Python distributions

Plux plux is the dynamic code loading framework used in LocalStack. Overview The

LocalStack 65 Dec 20, 2022
Multtable is a collection of multiplication table generators in various languages.

Multtable Multtable is a collection of multiplication table generators in various languages. This project was created as a joke based on one of my bro

pollen__ 7 Mar 05, 2022
A person does not exist image bot

A person does not exist image bot

Fayas Noushad 3 Dec 12, 2021
Rofi script to minimize / unminimize multiple windows in qtile

Qminimize Rofi script to minimize / unminimize multiple windows in qtile Additional requirements : EWMH module fuzzywuzzy module How to use it : - Clo

9 Sep 18, 2022
InverterApi - This project has been designed to take monitoring data from Voltronic, Axpert, Mppsolar PIP, Voltacon, Effekta

InverterApi - This project has been designed to take monitoring data from Voltronic, Axpert, Mppsolar PIP, Voltacon, Effekta

Josep Escobar 2 Sep 03, 2022
An easy-to-learn, dynamic, interpreted, procedural programming language

Gen Programming Language WARNING!! THIS LANGUAGE IS IN DEVELOPMENT. ANYTHING CAN CHANGE AT ANY MOMENT. Gen is a dynamic, interpreted, procedural progr

Gen Programming Language 7 Oct 17, 2022
Welcome to my pod transcript search webb app!

pod_transcript_search Welcome to the pod transcript search webb app! Tech stack used: Languages used: Python (for the back-end), JavaScript (for the f

3 Feb 04, 2022
Birthday program - A program that lookups a birthday txt file and compares to the current date to check for birthdays

Birthday Program This is a program that lookups a birthday txt file and compares

Daquiver 4 Feb 02, 2022
Application to list countries in order of travel from the United States.

Application to list countries in order of travel from the United States.

Broden Wanner 1 Nov 03, 2021
An example of Connecting a MySQL Database with Python Code

An example of Connecting a MySQL Database with Python Code And How to install Table of contents General info Technologies Setup General info In this p

Mohammad Hosseinzadeh 1 Nov 23, 2021
A simple desktop application to scan and export Genshin Impact Artifacts.

「天目」 -- Amenoma 简体中文 | English 「天目流的诀窍就是滴水穿石的耐心和全力以赴的意志」 扫描背包中的圣遗物,并导出至 json 格式。之后可导入圣遗物分析工具( 莫娜占卜铺 、 MingyuLab 、 Genshin Optimizer 进行计算与规划等。 已支持 原神2.

夏至 475 Dec 30, 2022
Spartan implementation of H.O.T.T.

Down The Path I was walking down the line, Trying to find some peace of mind. Then I saw you, You were takin' it slow, And walkin' it one step at a ti

Trebor Huang 25 Aug 05, 2022
🪄 Auto-generate Streamlit UI from Pydantic Models and Dataclasses.

Streamlit Pydantic Auto-generate Streamlit UI elements from Pydantic models. Getting Started • Documentation • Support • Report a Bug • Contribution •

Lukas Masuch 103 Dec 25, 2022