Async-first dependency injection library based on python type hints

Overview

Dependency Depression

Async-first dependency injection library based on python type hints

Quickstart

First let's create a class we would be injecting:

class Test:
    pass

Then we should create instance of container and register our Test class in it, we would use Callable provider that would simply call our class, since classes are also callables!

from dependency_depression import Depression, Callable

container = Depression()
container.register(Test, Callable(Test))

Then we should create a context and resolve our class from it:

with container.sync_context() as ctx:
    ctx.resolve(Test)
    # < __main__.Test>

Injecting

To mark parameters for injection mark them with typing.Annotated and Inject marker

from typing import Annotated
from dependency_depression import Callable, Depression, Inject


def create_number() -> int:
    return 42


def create_str(number: Annotated[int, Inject]) -> str:
    return str(number)

container = Depression()
container.register(str, Callable(create_str))
container.register(int, Callable(create_number))

with container.sync_context() as ctx:
    string = ctx.resolve(str)
    print(string, type(string))
    # 42 
   

Providers

When creating a provider you should specify the type it returns, but it can be inferred from class type or function return type:

from dependency_depression import Callable

provider = Callable(int)
# Is the same as Callable(factory=int, impl=int)
assert provider.provide_sync() == 0

Example using factory function, impl is inferred from return type hint:

from dependency_depression import Callable


def create_foo() -> str:
    return "foo"


provider = Callable(create_foo)
assert provider.provide_sync() == "foo"
assert provider.impl is str

This all comes into play when you have multiple implementations for base class and want to retrieve individual providers from a container,
let's register two concrete classes under same interface:

from dependency_depression import Depression, Callable


class Base:
    pass


class ConcreteA(Base):
    pass


class ConcreteB(Base):
    pass


container = Depression()
container.register(Base, Callable(ConcreteA))
container.register(Base, Callable(ConcreteB))

with container.sync_context() as ctx:
    a = ctx.resolve(Base, ConcreteA)  # <__main__.ConcreteA>
    b = ctx.resolve(Base, ConcreteB)  # <__main__.ConcreteB>
    
    # This would raise an error since we have two classes registered as `Base`
    ctx.resolve(Base)

If you have multiple classes registered under same interface you can specify concrete class using Impl marker:

from typing import Annotated
from dependency_depression import Inject, Impl


class Injectee:
    def __init__(
        self,
        a: Annotated[Base, Inject, Impl[ConcreteA]],
        b: Annotated[Base, Inject, Impl[ConcreteB]],
    ):
        pass

You can also just register concrete classes instead:

container.register(ConcreteA, Callable(ConcreteA))
container.register(ConcreteB, Callable(ConcreteB))

class Injectee:
    def __init__(
        self,
        a: Annotated[ConcreteA, Inject],
        b: Annotated[ConcreteB, Inject],
    ):
        pass

Generics

Dependency Depression can also be used with Generics:

T: raise NotImplementedError class UserRepository(IRepository[User]): def get(self, identity: int) -> User: return User(id=identity, username="Username") class ItemRepository(IRepository[Item]): def get(self, identity: int) -> Item: return Item(id=identity, title="Title") class Injectee: def __init__( self, user_repository: Annotated[IRepository[User], Inject], item_repository: Annotated[IRepository[Item], Inject], ): self.user_repository = user_repository self.item_repository = item_repository container = Depression() container.register(IRepository[User], Callable(UserRepository)) container.register(IRepository[Item], Callable(ItemRepository)) container.register(Injectee, Callable(Injectee)) with container.sync_context() as ctx: injectee = ctx.resolve(Injectee) injectee.user_repository # < __main__.UserRepository> injectee.item_repository # <__main__.ItemRepository>">
import dataclasses
from typing import Generic, TypeVar, Annotated

from dependency_depression import Inject, Depression, Callable

T = TypeVar("T")


@dataclasses.dataclass
class User:
    id: int
    username: str


@dataclasses.dataclass
class Item:
    id: int
    title: str


class IRepository(Generic[T]):
    def get(self, identity: int) -> T:
        raise NotImplementedError


class UserRepository(IRepository[User]):
    def get(self, identity: int) -> User:
        return User(id=identity, username="Username")

    
class ItemRepository(IRepository[Item]):
    def get(self, identity: int) -> Item:
        return Item(id=identity, title="Title")

    
class Injectee:
    def __init__(
        self,
        user_repository: Annotated[IRepository[User], Inject],
        item_repository: Annotated[IRepository[Item], Inject],
    ):
        self.user_repository = user_repository
        self.item_repository = item_repository


container = Depression()
container.register(IRepository[User], Callable(UserRepository))
container.register(IRepository[Item], Callable(ItemRepository))
container.register(Injectee, Callable(Injectee))

with container.sync_context() as ctx:
    injectee = ctx.resolve(Injectee)
    injectee.user_repository
    # < __main__.UserRepository>
    injectee.item_repository
    # <__main__.ItemRepository>

Context

Context as meant to be used within application or request scope, it keeps instances cache and an ExitStack to close all resources.

Cache

Context keeps cache of all instances, so they won't be created again, unless use_cache=False or NoCache is used.

In this example passing use_cache=False would cause context to create instance of Test again, however it wouldn't be cached:

from dependency_depression import Callable, Depression


class Test:
    pass


container = Depression()
container.register(Test, Callable(Test))

with container.sync_context() as ctx:
    first = ctx.resolve(Test)
    
    assert first is not ctx.resolve(Test, use_cache=False)
    # first is still cached in context
    assert first is ctx.resolve(Test)

Closing resources using context managers

Context would also use functions decorated with contextlib.contextmanager or contextlib.asyncontextmanager, but it won't use other instances of ContextManager.
Note that you're not passing impl parameter should specify return type using Iterable, Generator or their async counterparts - AsyncIterableand AsyncGenerator:

import contextlib
from typing import Iterable

from dependency_depression import Depression, Callable


@contextlib.contextmanager
def contextmanager() -> Iterable[int]:
    yield 42


class ContextManager:
    def __enter__(self):
        # This would never be called
        raise ValueError

    def __exit__(self, exc_type, exc_val, exc_tb):
        pass


container = Depression()

# Without return type hint you can specify impl parameter:
# container.register(int, Callable(contextmanager, int))
container.register(int, Callable(contextmanager))
container.register(ContextManager, Callable(ContextManager))

with container.sync_context() as ctx:
    number = ctx.resolve(int)  # 42
    ctx_manager = ctx.resolve(ContextManager) # __enter__ would not be called
    with ctx_manager:
        ...
        # Oops, ValueError raised

In case you need to manage lifecycle of your objects you should wrap them in a context manager:

import contextlib
from typing import AsyncGenerator

from dependency_depression import Callable, Depression
from sqlalchemy.ext.asyncio import AsyncSession


@contextlib.asynccontextmanager
async def get_session() -> AsyncGenerator[AsyncSession, None]:
    session = AsyncSession()
    async with session:
        try:
            yield session
        except Exception:
            await session.rollback()
            raise

container = Depression()
container.register(AsyncSession, Callable(AsyncSession))

@Inject decorator

@inject decorator allows you to automatically inject parameters into functions:

from typing import Annotated

from dependency_depression import Callable, Depression, Inject, inject


@inject
def injectee(number: Annotated[int, Inject]):
    return number


container = Depression()
container.register(int, Callable(int))

with container.sync_context():
    print(injectee())
    # 0

Without active context number parameter would not be injected:

injectee()
# TypeError: injectee() missing 1 required positional argument: 'number'

But you still can use your function just fine

print(injectee(42))

You can pass parameters even if you have an active context:

with container.sync_context():
    print(injectee())  # 0, injected
    print(injectee(42))  # 42, provided by user

Usage with Asyncio

Dependency Depression can be used in async context, just use context instead of sync_context:

import asyncio

from dependency_depression import Callable, Depression


async def get_number() -> int:
    await asyncio.sleep(1)
    return 42


async def main():
    container = Depression()
    container.register(int, Callable(get_number))
    async with container.context() as ctx:
        number = await ctx.resolve(int)
        assert number == 42


if __name__ == '__main__':
    asyncio.run(main())

Async context also supports both sync and async context managers and factory functions.

Owner
Doctor
Doctor
Our Ping Pong Project of numerical analysis, 2nd year IC B2 INSA Toulouse

Ping Pong Project The objective of this project was to determine the moment of impact of the ball with the ground. To do this, we used different model

0 Jan 02, 2022
Python interface to IEX and IEX cloud APIs

Python interface to IEX Cloud Referral Please subscribe to IEX Cloud using this referral code. Getting Started Install Install from pip pip install py

IEX Cloud 41 Dec 21, 2022
External Network Pentest Automation using Shodan API and other tools.

Chopin External Network Pentest Automation using Shodan API and other tools. Workflow Input a file containing CIDR ranges. Converts CIDR ranges to ind

Aditya Dixit 9 Aug 04, 2022
Customizable-menu-python - User customizable menu in Python

Menu personalizável pelo usuário em Python A minha ideia com esse projeto pessoa

Renan Barbosa 4 Oct 28, 2022
AdventOfCode 2021 solutions from the Devcord server

adventofcode-21 Ein Sammel-Repository für Advent of Code 2021-Lösungen der deutschen DevCord-Community. A repository collecting Advent of Code 2021 so

Devcord 12 Aug 26, 2022
BlueBorne Dockerized

BlueBorne Dockerized This is the repo to reproduce the BlueBorne kill-chain on Dockerized Android as described here, to fully understand the code you

SecSI 5 Sep 14, 2022
Multiple GNOME terminals in one window

Terminator by Chris Jones [email protected] and others. Description Terminator was

GNOME Terminator 1.5k Jan 01, 2023
A software dedicated to automaticaly select the agent of your desire in Valorant

AUTOPICKER A software dedicated to automaticaly select the agent of your desire in Valorant GUIDE Before stariting to use this program check if you ha

p1n00 0 Sep 24, 2022
Alternative StdLib for Nim for Python targets

Alternative StdLib for Nim for Python targets, hijacks Python StdLib for Nim

Juan Carlos 100 Jan 01, 2023
Visualize Data From Stray Scanner https://keke.dev/blog/2021/03/10/Stray-Scanner.html

StrayVisualizer A set of scripts to work with data collected using Stray Scanner. Usage Installing Dependencies Install dependencies with pip -r requi

Kenneth Blomqvist 45 Dec 30, 2022
「📖」Tool created to extract metadata from a domain

Metafind is an OSINT tool created with the aim of automating the search for metadata of a particular domain from the search engine known as Google.

9 Dec 28, 2022
The Zig programming language, packaged for PyPI

Zig PyPI distribution This repository contains the script used to repackage the releases of the Zig programming language as Python binary wheels. This

Zig Programming Language 100 Nov 04, 2022
This is friendlist update tools & old idz clon & follower idz clon etc

This is friendlist update tools & old idz clon & follower idz clon etc

MAHADI HASAN AFRIDI 1 Jan 15, 2022
Python script to preprocess images of all Pokémon to finetune ruDALL-E

ai-generated-pokemon-rudalle Python script to preprocess images of all Pokémon (the "official artwork" of each Pokémon via PokéAPI) into a format such

Max Woolf 132 Dec 11, 2022
Programa principal de la Silla C.D.P.

Silla CDP Página Web Contáctenos Lista de contenidos: Información del proyecto. Licencias. Contacto. Información del proyecto Silla CDP, o Silla Corre

Silla Control de Postura 1 Dec 02, 2021
Python project setup, updater, and launcher

pyLaunch Python project setup, updater, and launcher Purpose: Increase project productivity and provide features easily. Once installed as a git submo

DAAV, LLC 1 Jan 07, 2022
A simple solution for water overflow problem in Python

Water Overflow problem There is a stack of water glasses in a form of triangle as illustrated. Each glass has a 250ml capacity. When a liquid is poure

Kris 2 Oct 22, 2021
Processamento da Informação - Disciplina UFABC

Processamento da Informacao Disciplina UFABC, Linguagem de Programação Python - 2021.2 Objetivos Apresentar os fundamentos sobre manipulação e tratame

Melissa Junqueira de Barros Lins 1 Jun 12, 2022
Experiments with Tox plugin system

The project is an attempt to add to the tox some missing out of the box functionality. Basically it is just an extension for the tool that will be loa

Volodymyr Vitvitskyi 30 Nov 26, 2022
This repository contains Python Projects for Beginners as well as for Intermediate Developers built by Contributors.

Python Projects {Open Source} Introduction The repository was built with a tree-like structure in mind, it contains collections of Python Projects. Mo

Gaurav Pandey 115 Apr 30, 2022