Scientific color maps and standardization tools

Related tags

Miscellaneousscicomap
Overview

drawing

buy me caffeine

Scientific color maps

Blog post

Scicomap Medium blog post (free)

Installation

pip install scicomap

Introduction

Scicomap is a package that provides scientific color maps and tools to standardize your favourite color maps if you don't like the built-in ones. Scicomap currently provides sequential, bi-sequential, diverging, circular, qualitative and miscellaneous color maps. You can easily draw examples, compare the rendering, see how colorblind people will perceive the color maps. I will illustrate the scicomap capabilities below.

This package is heavily based on the Event Horyzon Plot package and uses good color maps found in the the python portage of the Fabio Crameri, cmasher, palettable, colorcet and cmocean

Motivation

The accurate representation of data is essential. Many common color maps distort data through uneven colour gradients and are often unreadable to those with color-vision deficiency. An infamous example is the jet color map. These color maps do not render all the information you want to illustrate or even worse render false information through artefacts. Scientist or not, your goal is to communicate visual information in the most accurate and appealing fashion. Moreover, do not overlook colour-vision deficiency, which represents 8% of the (Caucasian) male population.

Color spaces

Perceptual uniformity is the idea that Euclidean distance between colors in color space should match human color perception distance judgements. For example, a blue and red that are at a distance d apart should look as discriminable as green and purple that are at a distance d apart. Scicomap uses the CAM02-UCS color space (Uniform Colour Space). Its three coordinates are usually denoted by J', a', and b'. And its cylindrical coordinates are J', C', and h'. The perceptual color space Jab is similar to Lab. However, Jab uses an updated color appearance model that in theory provides greater precision for discriminability measurements.

  • Lightness: also known as value or tone, is a representation of a color's brightness
  • Chroma: the intrinsic difference between a color and gray of an object
  • Hue: the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, green, blue, and yellow

Encoding information

  • Lightness J': for a scalar value, intensity. It must vary linearly with the physical quantity
  • hue h' can encode an additional physical quantity, the change of hue should be linearly proportional to the quantity. The hue h' is also ideal in making an image more attractive without interfering with the representation of pixel values.
  • chroma is less recognizable and should not be used to encode physical information

Color map uniformization

Following the references and the theories, the uniformization is performed by

  • Making the color map linear in J'
  • Lifting the color map (making it lighter, i.e. increasing the minimal value of J')
  • Symmetrizing the chroma to avoid further artefacts
  • Avoid kinks and edges in the chroma curve
  • Bitonic symmetrization or not

Scicomap

Choosing the right type of color maps

Scicomap provides a bunch of color maps for different applications. The different types of color map are

import scicomap as sc
sc_map = sc.SciCoMap()
sc_map.get_ctype()
dict_keys(['diverging', 'sequential', 'multi-sequential', 'circular', 'miscellaneous', 'qualitative'])

I'll refer to the The misuse of colour in science communication for choosing the right scientific color map

Get the matplotlib cmap

plt_cmap_obj = sc_map.get_mpl_color_map()

Choosing the color map for a given type

Get the color maps for a given type

sc_map = sc.ScicoSequential()
sc_map.get_color_map_names()
dict_keys(['afmhot', 'amber', 'amber_r', 'amp', 'apple', 'apple_r', 'autumn', 'batlow', 'bilbao', 'bilbao_r', 'binary', 'Blues', 'bone', 'BuGn', 'BuPu', 'chroma', 'chroma_r', 'cividis', 'cool', 'copper', 'cosmic', 'cosmic_r', 'deep', 'dense', 'dusk', 'dusk_r', 'eclipse', 'eclipse_r', 'ember', 'ember_r', 'fall', 'fall_r', 'gem', 'gem_r', 'gist_gray', 'gist_heat', 'gist_yarg', 'GnBu', 'Greens', 'gray', 'Greys', 'haline', 'hawaii', 'hawaii_r', 'heat', 'heat_r', 'hot', 'ice', 'inferno', 'imola', 'imola_r', 'lapaz', 'lapaz_r', 'magma', 'matter', 'neon', 'neon_r', 'neutral', 'neutral_r', 'nuuk', 'nuuk_r', 'ocean', 'ocean_r', 'OrRd', 'Oranges', 'pink', 'plasma', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'rain', 'rainbow', 'rainbow-sc', 'rainbow-sc_r', 'rainforest', 'rainforest_r', 'RdPu', 'Reds', 'savanna', 'savanna_r', 'sepia', 'sepia_r', 'speed', 'solar', 'spring', 'summer', 'tempo', 'thermal', 'thermal_r', 'thermal-2', 'tokyo', 'tokyo_r', 'tropical', 'tropical_r', 'turbid', 'turku', 'turku_r', 'viridis', 'winter', 'Wistia', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd'])

Use a custom color map

As long as the color map is a matplotlib.colors.Colormap, matplotlib.colors.LinearSegmentedColormap or matplotlib.colors.ListedColormap object, you can pass it in the different classes.

import scicomap as sc
import matplotlib.pyplot as plt

# the thing that should not be
ugly_jet = plt.get_cmap("jet")
sc_map =  sc.ScicoMiscellaneous(cmap=ugly_jet)
f=sc_map.assess_cmap(figsize=(22,10))

Assessing a color map

In order to assess if a color map should be corrected or not, scicomap provides a way to quickly check if the lightness is linear, how asymmetric and smooth is the chroma and how the color map renders for color-deficient users. I will illustrate some of the artefacts using classical images, as the pyramid and specific functions for each kind of color map.

An infamous example

import scicomap as sc
import matplotlib.pyplot as plt

# the thing that should not be
ugly_jet = plt.get_cmap("jet")
sc_map =  sc.ScicoMiscellaneous(cmap=ugly_jet)
f=sc_map.assess_cmap(figsize=(22,10))

Clearly, the lightness is not linear, has edges and kinks. The chroma is not smooth and asymmetrical. See the below illustration to see how bad and how many artefacts the jet color map introduces

Correcting a color map

Sequential color map

Let's assess the built-in color map hawaii without correction:

sc_map = sc.ScicoSequential(cmap='hawaii')
f=sc_map.assess_cmap(figsize=(22,10))

The color map seems ok, however, the lightness is not linear and the chroma is asymmetrical even if smooth. Those small defects introduce artefact in the information rendering, as we can visualize using the following example

f=sc_map.draw_example()

We can clearly see the artefacts, especially for the pyramid for which our eyes should only pick out the corners in the pyramid (ideal situation). Those artefacts are even more striking for color-deficient users (this might not always be the case). Hopefully, scicomap provides an easy way to correct those defects:

# fixing the color map, using the same minimal lightness (lift=None), 
# not normalizing to bitone and 
# smoothing the chroma
sc_map.unif_sym_cmap(lift=None, 
                     bitonic=False, 
                     diffuse=True)

# re-assess the color map after fixing it                     
f=sc_map.assess_cmap(figsize=(22,10))

After fixing the color map, the artefacts are less present

Get the color map object

plt_cmap_obj = sc_map.get_mpl_color_map()

Diverging color map

We can perform exactly the same fix for diverging, circular, miscellaneous and qualitative color maps. Let's take a diverging color map as an illustrative example:

div_map = sc.ScicoDiverging(cmap='vanimo')
f=div_map.assess_cmap(figsize=(22,10))

the original color map is as follows

which renders as

The larger dark transition might help to distinguish the positive and negative regions but introduces artefacts (pyramids, second column panels). By correcting the color map, we remove the smooth dark transition by a sharp one and we "lift" the dark part to make it a bit brighter. Human eyes are more able to differentiate the lighter colors.

div_map = sc.ScicoDiverging(cmap='vanimo')
div_map.unif_sym_cmap(lift=25, 
                      bitonic=False, 
                      diffuse=True)
f=div_map.assess_cmap(figsize=(22,10))

which render as

Use with matplotlib

Use a corrected colormap in a matplotlib figure

import matplotlib.pyplot as plt
import matplotlib as mpl
import scicomap as sc
from scicomap.utils import _fn_with_roots

# load the color map
div_map = sc.ScicoDiverging(cmap='watermelon')

# correct the colormap
div_map.unif_sym_cmap(lift=15, 
                      bitonic=False, 
                      diffuse=True)

# get the fixed color map
fixed_cmap = div_map.get_mpl_color_map()
print(type(fixed_cmap))

# use it as you like
im = _fn_with_roots()
norm = mpl.colors.CenteredNorm()
divnorm = mpl.colors.TwoSlopeNorm(vmin=-1, vcenter=0, vmax=1.25)
fig = plt.figure(figsize=(3,3), facecolor="white")
ax = fig.add_subplot(1, 1, 1, facecolor="white")
pos = ax.imshow(im, cmap=fixed_cmap, aspect="auto", norm=divnorm)
fig.colorbar(pos, ax=ax);

Correct a matplotlib colormap

import matplotlib.pyplot as plt
import matplotlib as mpl
import scicomap as sc
from scicomap.utils import _fn_with_roots

# load the color map
mpl_cmap_obj = plt.get_cmap("PRGn")
div_map = sc.ScicoDiverging(cmap=mpl_cmap_obj)

# correct the colormap
div_map.unif_sym_cmap(lift=None, 
                      bitonic=False, 
                      diffuse=True)

# get the fixed color map
fixed_cmap = div_map.get_mpl_color_map()
print(type(fixed_cmap))

# use it as you like
im = _fn_with_roots()
norm = mpl.colors.CenteredNorm()
divnorm = mpl.colors.TwoSlopeNorm(vmin=-1, vcenter=0, vmax=1.25)
fig = plt.figure(figsize=(3,3), facecolor="white")
ax = fig.add_subplot(1, 1, 1, facecolor="white")
pos = ax.imshow(im, cmap=fixed_cmap, aspect="auto", norm=divnorm)
fig.colorbar(pos, ax=ax);

Comparing color maps

You can easily compare, raw or corrected, color maps using a picture of your choice

Color-defiency rendering

Bearing in mind that +- 8% of males are color-deficient, you can visualize the rendering of any colormap for different kind of deficiencies.

c_l =  ["cividis", "inferno", "magma", "plasma", "viridis"]
f = sc.plot_colorblind_vision(ctype='sequential', 
                              cmap_list=c_l, 
                              figsize=(30, 4), 
                              n_colors=11, 
                              facecolor="black")

Sequential color maps

The built-in picture is coming from First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole as the main part of Scicomap is built upon the EHT visualization library.

f = sc.compare_cmap(image="grmhd", 
                    ctype='sequential', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': 20}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

returning

Diverging color maps

Comparing the diverging color maps using a vortex image

f = sc.compare_cmap(image="vortex", 
                    ctype='diverging', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': None}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

Circular color maps

Comparing circular/phase color maps using a complex function

f = sc.compare_cmap(image="phase", 
                    ctype='circular', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': None}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

All the built-in color maps

Sequential

sc.plot_colormap(ctype='sequential', 
                 cmap_list='all', 
                 figsize=None, 
                 n_colors=5, 
                 facecolor="black", 
                 uniformize=True, 
                 symmetrize=False, 
                 unif_kwargs=None, 
                 sym_kwargs=None)

Diverging

Mutli-sequential

Miscellaneous

Circular

Qualitative

sc.plot_colormap(ctype='qualitative', 
                 cmap_list='all', 
                 figsize=None, 
                 n_colors=5, 
                 facecolor="black", 
                 uniformize=False, 
                 symmetrize=False, 
                 unif_kwargs=None, 
                 sym_kwargs=None)

References

Changes log

0.3

  • Add a section "how to use with matplotlib"
  • [Bug] Center diverging color map in examples

0.2

  • [Bug] Fix typo in chart titles

0.1

  • First version
You might also like...
A new mini-batch framework for optimal transport in deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow.

BoMb-OT Python3 implementation of the papers On Transportation of Mini-batches: A Hierarchical Approach and Improving Mini-batch Optimal Transport via

Configure request params such as text, color, size etc. And then download the image
Configure request params such as text, color, size etc. And then download the image

Configure request params such as text, color, size etc. And then download the image

A Tandy Color Computer 1, 2, and 3 assembler written in Python

CoCo Assembler and File Utility Table of Contents What is it? Requirements License Installing Assembler Assembler Usage Input File Format Print Symbol

A simple single-color identicon generator

Identicons What are identicons? Setup: git clone https://github.com/vjdad4m/identicons.git cd identicons pip3 install -r requirements.txt chmod +x

The goal of this program was to find the most common color in my living room.

The goal of this program was to find the most common color in my living room. I found a dataset online with colors names and their corr

A lighweight screen color picker tool
A lighweight screen color picker tool

tkpick A lighweigt screen color picker tool Availability Only GNU/Linux 🐧 Installing Install via pip (No auto-update): [sudo] pip install tkpick Usa

Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Convert text with ANSI color codes to HTML or to LaTeX.

Convert text with ANSI color codes to HTML or to LaTeX.

It is a Blender Tool which can convert the Object Data Attributes in face corner to the UVs or Vertex Color.

Blender_ObjectDataAttributesConvertTool It is a Blender Tool which can convert the Object Data Attributes in face corner to the UVs or Vertex Color. D

Releases(v0.4)
Owner
Thomas Bury
Physicist by passion and training, Data Scientist for a living (ok it's fun too), interdisciplinary by conviction. Human Bender for some topics.
Thomas Bury
CBO uses its Capital Tax model (CBO-CapTax) to estimate the effects of federal taxes on capital income from new investment

CBO’s CapTax Model CBO uses its Capital Tax model (CBO-CapTax) to estimate the effects of federal taxes on capital income from new investment. Specifi

Congressional Budget Office 7 Dec 16, 2022
Glyph Metadata Palette

This plugin for Glyphs3 allows you to associate arbitrary structured metadata to each glyph in your font.

Simon Cozens 4 Jan 26, 2022
An unofficial python API for trading on the DeGiro platform, with the ability to get real time data and historical data.

DegiroAPI An unofficial API for the trading platform Degiro written in Python with the ability to get real time data and historical data for products.

Jorrick Sleijster 5 Dec 16, 2022
Vector tile server for the Wildfire Predictive Services Unit

wps-tileserver Vector tile server for the Wildfire Predictive Services Unit Overview The intention of this project is to: provide tools to easily spin

Province of British Columbia 6 Dec 20, 2022
We want to check several batch of web URLs (1~100 K) and find the phishing website/URL among them.

We want to check several batch of web URLs (1~100 K) and find the phishing website/URL among them. This module is designed to do the URL/web attestation by using the API from NUS-Phishperida-Project.

3 Dec 28, 2022
Nick Craig-Wood's Website

Nick Craig-Wood's public website This directory tree is used to build all the different docs for Nick Craig-Wood's website. The content here is (c) Ni

Nick Craig-Wood 2 Sep 02, 2022
Automatically re-open threads when they get archived, no matter your boost level!

ThreadPersist Automatically re-open threads when they get archived, no matter your boost level! Installation You will need to install poetry to run th

7 Sep 18, 2022
A gamey, snakey esoteric programming language

Snak Snak is an esolang based on the classic snake game. Installation You will need python3. To use the visualizer, you will need the curses module. T

David Rutter 3 Oct 10, 2022
Cvdl-hw2 - Find Contour, Camera Calibration, Augmented Reality and Stereo Disparity Map

opevcvdl-hw2 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
I³ Tracker for Essential Open Innovation Datasets

I³ Tracker for Essential Open Innovation Datasets This repository is set up to track, version, and contribute updates to the I³ Essential Open Innovat

1 Feb 08, 2022
Lock a program and kills it indefinitely if it is started.

Kill By Lock Lock a program and kills it indefinitely if it is started. How start it? It' simple, you just have to double-click on the python file (.p

1 Jan 12, 2022
A website to collect vintage 4 tracks cassette recorders.

Vintage 4tk cassette recorders A website to collect vintage 4 tracks cassette recorders. Local development setup Copy and customize Django settings (e

1 May 01, 2022
Aevsploit İçin Destekde Bulun Papara: 1427113016

Aevsploit İçin Destekde Bulun Papara: 1427113016 Toolu Geliştirmek İçin Fikirlerinizi Bekliyorum Telegram

9 Jun 07, 2022
Cylinder volume calculator features the calculations of the volume of a Right /oblique full cylinder

Cylinder-Volume-Calculator Cylinder volume calculator features the calculations of the volume of a Right /oblique full cylinder. Size : 10.5 mb compat

Abhijeet 4 Nov 07, 2022
Set of scripts that schedules employees for shifts throughout the week based on availability, shift times, and shift necessities

Automatic-Scheduler Set of scripts that schedules employees for shifts throughout the week based on availability, shift times, and shift necessities *

Matthew 1 May 01, 2022
The earliest beta version of pytgcalls on Linux x86_64 and ARM64! Use in production at your own risk!

Public beta test. Use in production at your own risk! tgcalls - a python binding for tgcalls (c++ lib by Telegram); pytgcalls - library connecting pyt

Il'ya 21 Jan 13, 2022
Cool Bioinformatics Scripts

Cool Bioinformatics Scripts qqplot You can use this script in two ways read tons of millions of P values from stdin # python zcat pval.txt.gz | qqplo

8 Oct 30, 2022
A good Tool to comment on xmw

A good Tool to comment on xmw

1 Feb 10, 2022
A Lite Package focuses on making overwrite and mending functions easier and more flexible.

Overwrite Make Overwrite More flexible In Python A Lite Package focuses on making overwrite and mending functions easier and more flexible. Certain Me

2 Jun 15, 2022
Repositório contendo atividades no curso de desenvolvimento de sistemas no SENAI

SENAI-DES Este é um repositório contendo as atividades relacionadas ao curso de desenvolvimento de sistemas no SENAI. Se é a primeira vez em contato c

Abe Hidek 4 Dec 06, 2022