Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Overview

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

This repository is the official implementation for the following paper Analytic-LISTA networks proposed in the following paper:

"Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently" by Xiaohan Chen, Jason Zhang and Zhangyang Wang from the VITA Research Group.

The code implements the Peek-a-Boo (PaB) algorithm for various convolutional networks and is tested in Linux environment with Python: 3.7.2, PyTorch 1.7.0+.

Getting Started

Dependency

pip install tqdm

Prerequisites

  • Python 3.7+
  • PyTorch 1.7.0+
  • tqdm

Data Preparation

To run ImageNet experiments, download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val/ folder respectively as shown below. A useful script for automatic extraction can be found here.

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

How to Run Experiments

CIFAR-10/100 Experiments

To apply PaB w/ PSG to a ResNet-18 network on CIFAR-10/100 datasets, use the following command:

python main.py --use-cuda 0 \
    --arch PsgResNet18 --init-method kaiming_normal \
    --optimizer BOP --ar 1e-3 --tau 1e-6 \
    --ar-decay-freq 45 --ar-decay-ratio 0.15 --epochs 180 \
    --pruner SynFlow --prune-epoch 0 \
    --prune-ratio 3e-1 --prune-iters 100 \
    --msb-bits 8 --msb-bits-weight 8 --msb-bits-grad 16 \
    --psg-threshold 1e-7 --psg-no-take-sign --psg-sparsify \
    --exp-name cifar10_resnet18_pab-psg

To break down the above complex command, PaB includes two stages (pruning and Bop training) and consists of three components (a pruner, a Bop optimizer and a PSG module).

[Pruning module] The pruning module is controlled by the following arguments:

  • --pruner - A string that indicates which pruning method to be used. Valid choices are ['Mag', 'SNIP', 'GraSP', 'SynFlow'].
  • --prune-epoch - An integer, the epoch index of when (the last) pruning is performed.
  • --prune-ratio - A float, the ratio of non-zero parameters remained after (the last) pruning
  • --prune-iters - An integeer, the number of pruning iterations in one run of pruning. Check the SynFlow paper for what this means.

[Bop optimizer] Bop has several hyperparameters that are essential to its successful optimizaiton as shown below. More details can be found in the original Bop paper.

  • --optimizer - A string that specifies the Bop optimizer. You can pass 'SGD' to this argument for a standard training of SGD. Check here.
  • --ar - A float, corresponding to the adativity rate for the calculation of gradient moving average.
  • --tau - A float, corresponding to the threshold that decides if a binary weight needs to be flipped.
  • --ar-decay-freq - An integer, interval in epochs between decays of the adaptivity ratio.
  • --ar-decay-ratio - A float, the decay ratio of the adaptivity ratio decaying.

[PSG module] PSG stands for Predictive Sign Gradient, which was originally proposed in the E2-Train paper. PSG uses low-precision computation during backward passes to save computational cost. It is controlled by several arguments.

  • --msb-bits, --msb-bits-weight, --msb-bits-grad - Three floats, the bit-width for the inputs, weights and output errors during back-propagation.
  • --psg-threshold - A float, the threshold that filters out coarse gradients with small magnitudes to reduce gradient variance.
  • --psg-no-take-sign - A boolean that indicates to bypass the "taking-the-sign" step in the original PSG method.
  • --psg-sparsify - A boolean. The filtered small gradients are set to zero when it is true.

ImageNet Experiments

For PaB experiments on ImageNet, we run the pruning and Bop training in a two-stage manner, implemented in main_imagenet_prune.py and main_imagenet_train.py, respectively.

To prune a ResNet-50 network at its initialization, we first run the following command to perform SynFlow, which follows a similar manner for the arguments as in CIFAR experiments:

export prune_ratio=0.5  # 50% remaining parameters.

# Run SynFlow pruning
python main_imagenet_prune.py \
    --arch resnet50 --init-method kaiming_normal \
    --pruner SynFlow --prune-epoch 0 \
    --prune-ratio $prune_ratio --prune-iters 100 \
    --pruned-save-name /path/to/the/pruning/output/file \
    --seed 0 --workers 32 /path/to/the/imagenet/dataset

We then train the pruned model using Bop with PSG on one node with multi-GPUs.

# Bop hyperparameters
export bop_ar=1e-3
export bop_tau=1e-6
export psg_threshold="-5e-7"

python main_imagenet_train.py \
    --arch psg_resnet50 --init-method kaiming_normal \
    --optimizer BOP --ar $bop_ar --tau $bop_tau \
    --ar-decay-freq 30 --ar-decay-ratio 0.15 --epochs 100 \
    --msb-bits 8 --msb-bits-weight 8 --msb-bits-grad 16 \
    --psg-sparsify --psg-threshold " ${psg_threshold}" --psg-no-take-sign \
    --savedir /path/to/the/output/dir \
    --resume /path/to/the/pruning/output/file \
    --exp-name 'imagenet_resnet50_pab-psg' \
    --dist-url 'tcp://127.0.0.1:2333' \
    --dist-backend 'nccl' --multiprocessing-distributed \
    --world-size 1 --rank 0 \
    --seed 0 --workers 32 /path/to/the/imagenet/dataset 

Acknowledgement

Thank you to Jason Zhang for helping with the development of the code repo, the research that we conducted with it and the consistent report after his movement to CMU. Thank you to Prof. Zhangyang Wang for the guidance and unreserved help with this project.

Cite this work

If you find this work or our code implementation helpful for your own resarch or work, please cite our paper.

@inproceedings{
chen2022peek,
title={Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently},
author={Xiaohan Chen and Jason Zhang and Zhangyang Wang},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=moHCzz6D5H3},
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022