SeqAttack: a framework for adversarial attacks on token classification models

Overview

SeqAttack: a framework for adversarial attacks on token classification models

SeqAttack is a framework for conducting adversarial attacks against Named Entity Recognition (NER) models and for data augmentation. This library is heavily based on the popular TextAttack framework, and can similarly be used for:

  • Understanding models by running adversarial attacks against them and observing their shortcomings
  • Develop new attack strategies
  • Guided data augmentation, generating additional training samples that can be used to fix a model's shortcomings

The SeqAttack paper is available here.

Setup

Run pip install -r requirements.txt and you're good to go! If you want to run experiments on a fresh virtual machine, check out scripts/gcp.sh which installs all system dependencies for running the code.

The code was tested with python 3.7, if you're using a different version your mileage may vary.

Usage

The main features of the framework are available via the command line interface, wrapped by cli.py. The following subsections describe the usage of the various commands.

Attack

Attacks are executed via the python cli.py attack subcommand. Attack commands are split in two parts:

  • General setup: options common to all adversarial attacks (e.g. model, dataset...)
  • Attack specific setup: options specific to a particular attack strategy

Thus, a typical attack command might look like the following:

python cli.py attack [general-options] attack-recipe [recipe-options]

For example, if we want to attack dslim/bert-base-NER, a NER model trained on CoNLL2003 using deepwordbug as the attack strategy we might run:

python cli.py attack                                            \
       --model-name dslim/bert-base-NER                         \
       --output-path output-dataset.json                        \
       --cache                                                  \
       --dataset-config configs/conll2003-config.json           \
       deepwordbug

The dataset configuration file, configs/conll2003-config.json defines:

  • The dataset path or name (in the latter case it will be downloaded from HuggingFace)
  • The split (e.g. train, test). Only for HuggingFace datasets
  • The human-readable names (a mapping between numerical labels and textual labels), given as a list
  • A labels map, used to remap the dataset's ground truth to align it with the model output as needed. This field can be null if no remapping is needed

In the example above, labels_map is used to align the dataset labels to the output from dslim/bert-base-NER. The dataset labels are the following:

O (0), B-PER (1), I-PER (2), B-ORG (3), I-ORG (4) B-LOC (5), I-LOC (6) B-MISC (7), I-MISC (8)

while the model labels are:

O (0), B-MISC (1), I-MISC (2), B-PER (3), I-PER (4) B-ORG (5), I-ORG (6) B-LOC (7), I-LOC (8)

Thus a remapping is needed and labels_map takes care of it.


The available attack strategies are the following:

Attack Strategy Transformation Constraints Paper
BAE word swap USE sentence cosine similarity https://arxiv.org/abs/2004.01970
BERT-Attack word swap USE sentence cosine similarity, Maximum words perturbed https://arxiv.org/abs/2004.09984
CLARE word swap and insertion USE sentence cosine similarity https://arxiv.org/abs/2009.07502
DeepWordBug character insertion, deletion, swap (ab --> ba) and substitution Levenshtein edit distance https://arxiv.org/abs/1801.04354
Morpheus inflection word swap https://www.aclweb.org/anthology/2020.acl-main.263.pdf
SCPN paraphrasing https://www.aclweb.org/anthology/N18-1170
TextFooler word swap USE sentence cosine similarity, POS match, word-embedding distance https://arxiv.org/abs/1907.11932

The table above is based on this table. In addition to the constraints shown above the attack strategies are also forbidden from modifying and inserting named entities by default.

Evaluation

To evaluate a model against a standard dataset run:

python cli.py evaluate                  \
       --model dslim/bert-base-NER      \
       --dataset conll2003              \
       --split test                     \
       --mode strict                    \

To evaluate the effectivenes of an attack run the following command:

python cli.py evaluate                                  \
       --model dslim/bert-base-NER                      \
       --attacked-dataset experiments/deepwordbug.json  \
       --mode strict                                    \

The above command will compute and display the metrics for the original predictions and their adversarial counterparts.

The evaluation is based on seqeval

Dataset selection

Given a dataset, our victim model may be able to predict some dataset samples perfectly, but it may produce significant errors on others. To evaluate an attack's effectiveness we may want to select samples with a small initial misprediction score. This can be done via the following command:

python cli.py pick-samples                              \
       --model dslim/bert-base-NER                      \
       --dataset-config configs/conll2003-config.json   \
        --max-samples 256                               \
       --max-initial-score 0.5                          \ # The maximum initial misprediction score
       --output-filename cherry-picked.json             \
       --goal-function untargeted

Tests

Tests can be run with pytest

Adversarial examples visualization

The output datasets can be visualized with SeqAttack-Visualization

Owner
Walter
Software Developer from 🇮🇹 based in 🇳🇱
Walter
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022