SemTorch

Overview

SemTorch

This repository contains different deep learning architectures definitions that can be applied to image segmentation.

All the architectures are implemented in PyTorch and can been trained easily with FastAI 2.

In Deep-Tumour-Spheroid repository can be found and example of how to apply it with a custom dataset, in that case brain tumours images are used.

These architectures are classified as:

  • Semantic Segmentation: each pixel of an image is linked to a class label. Semantic Segmentation
  • Instance Segmentation: is similar to semantic segmentation, but goes a bit deeper, it identifies , for each pixel, the object instance it belongs to. Instance Segmentation
  • Salient Object Detection (Binary clases only): detection of the most noticeable/important object in an image. Salient Object Detection

🚀 Getting Started

To start using this package, install it using pip:

For example, for installing it in Ubuntu use:

pip3 install SemTorch

👩‍💻 Usage

This package creates an abstract API to access a segmentation model of different architectures. This method returns a FastAI 2 learner that can be combined with all the fastai's functionalities.

# SemTorch
from semtorch import get_segmentation_learner

learn = get_segmentation_learner(dls=dls, number_classes=2, segmentation_type="Semantic Segmentation",
                                 architecture_name="deeplabv3+", backbone_name="resnet50", 
                                 metrics=[tumour, Dice(), JaccardCoeff()],wd=1e-2,
                                 splitter=segmentron_splitter).to_fp16()

You can find a deeper example in Deep-Tumour-Spheroid repository, in this repo the package is used for the segmentation of brain tumours.

def get_segmentation_learner(dls, number_classes, segmentation_type, architecture_name, backbone_name,
                             loss_func=None, opt_func=Adam, lr=defaults.lr, splitter=trainable_params, 
                             cbs=None, pretrained=True, normalize=True, image_size=None, metrics=None, 
                             path=None, model_dir='models', wd=None, wd_bn_bias=False, train_bn=True,
                             moms=(0.95,0.85,0.95)):

This function return a learner for the provided architecture and backbone

Parameters:

  • dls (DataLoader): the dataloader to use with the learner
  • number_classes (int): the number of clases in the project. It should be >=2
  • segmentation_type (str): just Semantic Segmentation accepted for now
  • architecture_name (str): name of the architecture. The following ones are supported: unet, deeplabv3+, hrnet, maskrcnn and u2^net
  • backbone_name (str): name of the backbone
  • loss_func (): loss function.
  • opt_func (): opt function.
  • lr (): learning rates
  • splitter (): splitter function for freazing the learner
  • cbs (List[cb]): list of callbacks
  • pretrained (bool): it defines if a trained backbone is needed
  • normalize (bool): if normalization is applied
  • image_size (int): REQUIRED for MaskRCNN. It indicates the desired size of the image.
  • metrics (List[metric]): list of metrics
  • path (): path parameter
  • model_dir (str): the path in which save models
  • wd (float): wieght decay
  • wd_bn_bias (bool):
  • train_bn (bool):
  • moms (Tuple(float)): tuple of different momentuns

Returns:

  • learner: value containing the learner object

Supported configs

Architecture supported config backbones
unet Semantic Segmentation,binary Semantic Segmentation,multiple resnet18, resnet34, resnet50, resnet101, resnet152, xresnet18, xresnet34, xresnet50, xresnet101, xresnet152, squeezenet1_0, squeezenet1_1, densenet121, densenet169, densenet201, densenet161, vgg11_bn, vgg13_bn, vgg16_bn, vgg19_bn, alexnet
deeplabv3+ Semantic Segmentation,binary Semantic Segmentation,multiple resnet18, resnet34, resnet50, resnet101, resnet152, resnet50c, resnet101c, resnet152c, xception65, mobilenet_v2
hrnet Semantic Segmentation,binary Semantic Segmentation,multiple hrnet_w18_small_model_v1, hrnet_w18_small_model_v2, hrnet_w18, hrnet_w30, hrnet_w32, hrnet_w48
maskrcnn Semantic Segmentation,binary resnet50
u2^net Semantic Segmentation,binary small, normal

📩 Contact

📧 [email protected]

💼 Linkedin David Lacalle Castillo

Owner
David Lacalle Castillo
Machine Learning Engineer
David Lacalle Castillo
CellProfiler is a open-source application for biological image analysis

CellProfiler is a free open-source software designed to enable biologists without training in computer vision or programming to quantitatively measure phenotypes from thousands of images automaticall

CellProfiler 732 Dec 23, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Super Mario Game With Python

Super_Mario Hello all this is a simple python program which tries to use our body as a controller for the super mario game Here I have used media pipe

Adarsh Badagala 219 Nov 25, 2022
Give a solution to recognize MaoYan font.

猫眼字体识别 该 github repo 在于帮助xjtlu的同学们识别猫眼的扭曲字体。已经打包上传至 pypi ,可以使用 pip 直接安装。 猫眼字体的识别不出来的原理与解决思路在采茶上 使用方法: import MaoYanFontRecognize

Aruix 4 Jun 30, 2022
A toolbox of scene text detection and recognition

FudanOCR This toolbox contains the implementations of the following papers: Scene Text Telescope: Text-Focused Scene Image Super-Resolution [Chen et a

FudanVIC Team 170 Dec 26, 2022
Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.

SynthText Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Ved

Ankush Gupta 1.8k Dec 28, 2022
InverseRenderNet: Learning single image inverse rendering, CVPR 2019.

InverseRenderNet: Learning single image inverse rendering !! Check out our new work InverseRenderNet++ paper and code, which improves the inverse rend

Ye Yu 141 Dec 20, 2022
This is a implementation of CRAFT OCR method

This is a implementation of CRAFT OCR method

Esaka 0 Nov 01, 2021
A simple python program to record security cam footage by detecting a face and body of a person in the frame.

SecurityCam A simple python program to record security cam footage by detecting a face and body of a person in the frame. This code was created by me,

1 Nov 08, 2021
Fine tuning keras-ocr python package with custom synthetic dataset from scratch

OCR-Pipeline-with-Keras The keras-ocr package generally consists of two parts: a Detector and a Recognizer: Detector is responsible for creating bound

Eugene 1 Jan 05, 2022
A curated list of resources dedicated to scene text localization and recognition

Scene Text Localization & Recognition Resources A curated list of resources dedicated to scene text localization and recognition. Any suggestions and

CarlosTao 1.6k Dec 22, 2022
A selectional auto-encoder approach for document image binarization

The code of this repository was used for the following publication. If you find this code useful please cite our paper: @article{Gallego2019, title =

Javier Gallego 89 Nov 18, 2022
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
Converts an image into funny, smaller amongus characters

SussyImage Converts an image into funny, smaller amongus characters Demo Mona Lisa | Lona Misa (Made up of AmongUs characters) API I've also added an

Dhravya Shah 14 Aug 18, 2022
This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the robots of the future.

This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the

Elkin Javier Guerra Galeano 17 Nov 03, 2022
QED-C: The Quantum Economic Development Consortium provides these computer programs and software for use in the fields of quantum science and engineering.

Application-Oriented Performance Benchmarks for Quantum Computing This repository contains a collection of prototypical application- or algorithm-cent

SRI International 67 Nov 30, 2022
Code for the paper "DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks" (ICCV '19)

DewarpNet This repository contains the codes for DewarpNet training. Recent Updates [May, 2020] Added evaluation images and an important note about Ma

<a href=[email protected]"> 354 Jan 01, 2023
docstrum

Docstrum Algorithm Getting Started This repo is for developing a Docstrum algorithm presented by O’Gorman (1993). Disclaimer This source code is built

Chulwoo Mike Pack 54 Dec 13, 2022
A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database.

A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database. The structure, shape and proportions of the faces are comp

Pavankumar Khot 4 Mar 19, 2022
Hand Detection and Finger Detection on Live Feed

Hand-Detection-On-Live-Feed Hand Detection and Finger Detection on Live Feed Getting Started Install the dependencies $ git clone https://github.com/c

Chauhan Mahaveer 2 Jan 02, 2022