Semi-Autoregressive Transformer for Image Captioning

Related tags

Deep Learningsatic
Overview

Semi-Autoregressive Transformer for Image Captioning

Requirements

  • Python 3.6
  • Pytorch 1.6

Prepare data

  1. Please use git clone --recurse-submodules to clone this repository and remember to follow initialization steps in coco-caption/README.md.
  2. Download the preprocessd dataset from this link and extract it to data/.
  3. Please follow this instruction to prepare the adaptive bottom-up features and place them under data/mscoco/. Please follow this instruction to prepare the features and place them under data/cocotest/ for online test evaluation.
  4. Download part checkpoints from here and extract them to save/.

Offline Evaluation

To reproduce the results, such as SATIC(K=2, bw=1) after self-critical training, just run

python3 eval.py  --model  save/nsc-sat-2-from-nsc-seqkd/model-best.pth   --infos_path  save/nsc-sat-2-from-nsc-seqkd/infos_nsc-sat-2-from-nsc-seqkd-best.pkl    --batch_size  1   --beam_size   1   --id  nsc-sat-2-from-nsc-seqkd   

Online Evaluation

Please first run

python3 eval_cocotest.py  --input_json  data/cocotest.json  --input_fc_dir data/cocotest/cocotest_bu_fc --input_att_dir  data/cocotest/cocotest_bu_att   --input_label_h5    data/cocotalk_label.h5  --num_images -1    --language_eval 0
--model  save/nsc-sat-4-from-nsc-seqkd/model-best.pth   --infos_path  save/nsc-sat-4-from-nsc-seqkd/infos_nsc-sat-4-from-nsc-seqkd-best.pkl    --batch_size  32   --beam_size   3   --id   captions_test2014_alg_results  

and then follow the instruction to upload results.

Training

  1. In the first training stage, such as SATIC(K=2) model with sequence-level distillation and weight initialization, run
python3  train.py   --noamopt --noamopt_warmup 20000 --label_smoothing 0.0  --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 5e-4 --num_layers 6 --input_encoding_size 512 --rnn_size 2048 --learning_rate_decay_start 0 --scheduled_sampling_start 0  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --max_epochs 15    --input_label_h5   data/cocotalk_seq-kd-from-nsc-transformer-baseline-b5_label.h5   --checkpoint_path   save/sat-2-from-nsc-seqkd   --id   sat-2-from-nsc-seqkd   --K  2
  1. Then in the second training stage, copy the above pretrained model first
cd save
./copy_model.sh  sat-2-from-nsc-seqkd    nsc-sat-2-from-nsc-seqkd
cd ..

and then run

python3  train.py    --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 1e-5 --num_layers 6 --input_encoding_size 512 --rnn_size 2048  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --self_critical_after 10  --max_epochs    40   --input_label_h5    data/cocotalk_label.h5   --start_from   save/nsc-sat-2-from-nsc-seqkd   --checkpoint_path   save/nsc-sat-2-from-nsc-seqkd  --id  nsc-sat-2-from-nsc-seqkd    --K 2

Citation

@article{zhou2021semi,
  title={Semi-Autoregressive Transformer for Image Captioning},
  author={Zhou, Yuanen and Zhang, Yong and Hu, Zhenzhen and Wang, Meng},
  journal={arXiv preprint arXiv:2106.09436},
  year={2021}
}

Acknowledgements

This repository is built upon self-critical.pytorch. Thanks for the released code.

Owner
YE Zhou
YE Zhou
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
SemiNAS: Semi-Supervised Neural Architecture Search

SemiNAS: Semi-Supervised Neural Architecture Search This repository contains the code used for Semi-Supervised Neural Architecture Search, by Renqian

Renqian Luo 21 Aug 31, 2022
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022