KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

Overview

KDD CUP 2020: AutoGraph

Team: aister


  • Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei
  • Team Introduction: Most of our members come from the Search Ads Algorithm Team of the Meituan Dianping Advertising Platform Department. We participated in three of the five competitions held by KDD CUP 2020 and achieved promising results. We won first place in Debiasing(1/1895), first place in AutoGraph(1/149), and third place in Multimodalities Recall(3/1433).
  • Based on the business scenario of Meituan and Dianping App, the Search Ads Algorithm Team of Meituan Dianping has rich expertise in innovation and algorithm optimization in the field of cutting-edge technology, including but not limited to, conducting algorithm research and application in the fileds of Debiasing, Graph Learning and Multimodalities.
  • If you are interested in our team or would like to communicate with our team(b.t.w., we are hiring), you can email to [email protected].

Introduction


  • The competition inviting participants deploy AutoML solutions for graph representation learning, where node classification is chosen as the task to evaluate the quality of learned representations. There are 15 graph datasets which consists of five public datasets to develop AutoML solutions, five feedback datasets to evaluate solutions and other five unseen datasets for the final rankings. Each dataset contains the index value of the node, the processed characteristic value, and the weight of the directed edge. We proposed automatic solutions that can effectively and efficiently learn high-quality representation for each node based on the given features, neighborhood and structural information underlying the graph. Please refer to the competition official website for more details: https://www.automl.ai/competitions/3

Preprocess


  • Feature
    • The size of node degree can obviously represent the importance of node, but the information of node degree with too much value is easy to overfit. So we bucket the node degree.
    • Node index embedding
    • The multi-hop neighbor information of the node.

Model Architecture


  • Automatic proxy evaluation is a better method to select proper models for a new dataset. However, the extremely limited time budget does not allow online model selection. For a trade-off of accuracy and speed, we offline evaluate many models and empirically find that GCN, GAT, GraphSAGE, and TAGConv can get robust and good results on the 5 public dataset and 5 feedback datasets. Thus we use them for ensemble in this code. One can get better results using proxy evaluation.
  • We design different network structures for directed graph and undirected graph, sparse graph and dense graph, graph with node features and graph without node features.

Training Procedure


  • Search learning rate
    • lr_list = [0.05, 0.03, 0.01, 0.0075, 0.005, 0.003, 0.001, 0.0005]
    • Select the optimal learning rate of each model in this data set. After 16 rounds of training, choose the learning rate which get lowest loss(average of epoch 14th, 15th and 16th) in the model.
  • Estimate running time
    • By running the model, estimating the model initialization time and training time for each epoch.
    • The model training epochs are determined according to remaining time and running time of the model.
  • Training and validation
    • The difference of training epochs will lead to the big difference of model effect. It is very easy to overfit for the graph with only node ID information and no original features. So we adopt cross validation and early stopping, which makes the model more robust.
    • training with the following parameters:
      • Learning rate = best_lr
      • Loss: NLL Loss
      • Optimizer: Adam

Reproducibility


  • Requirement
    • Python==3.6
    • torch==1.4.0
    • torch-geometric==1.3.2
    • numpy==1.18.1
    • pandas==1.0.1
    • scikit-learn==0.19.1
  • Training
    • Run ingestion.py.

Reference


[1] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.
[2] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J]. arXiv preprint arXiv:1710.10903, 2017.
[3] Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs[C]//Advances in neural information processing systems. 2017: 1024-1034.
[4] Du J, Zhang S, Wu G, et al. Topology adaptive graph convolutional networks[J]. arXiv preprint arXiv:1710.10370, 2017.

Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022