Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Related tags

Deep LearningDietNeRF
Overview

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Website | ICCV paper | arXiv | Twitter

Diagram overviewing DietNeRF's training procedure

This repository contains the official implementation of DietNeRF, a system that reconstructs 3D scenes from a few posed photos.

Setup

We use the following folder structure:

dietnerf/
  logs/ (images, videos, checkpoints)
  data/
    nerf_synthetic/
  configs/ (run configuration files)
CLIP/ (Fork of OpenAI's clip repository with a wrapper)

Create conda environment:

conda create -n dietnerf python=3.9
conda activate dietnerf

Set up requirements and our fork of CLIP:

pip install -r requirements.txt
cd CLIP
pip install -e .

Login to Weights & Biases:

wandb login

Experiments on the Realistic Synthetic dataset

Realistic Synthetic experiments are implemented in the ./dietnerf subdirectory.

You need to download datasets from NeRF's Google Drive folder. The dataset was used in the original NeRF paper by Mildenhall et al. For example,

mkdir dietnerf/logs/ dietnerf/data/
cd dietnerf/data
pip install gdown
gdown --id 18JxhpWD-4ZmuFKLzKlAw-w5PpzZxXOcG -O nerf_synthetic.zip
unzip nerf_synthetic.zip
rm -r __MACOSX

Then, shrink images to 400x400:

python dietnerf/scripts/bulk_shrink_images.py "dietnerf/data/nerf_synthetic/*/*/*.png" dietnerf/data/nerf_synthetic_400_rgb/ True

These images are used for FID/KID computation. The dietnerf/run_nerf.py training and evaluation code automatically shrinks images with the --half_res argument.

Each experiment has a config file stored in dietnerf/configs/. Scripts in dietnerf/scripts/ can be run to train and evaluate models. Run these scripts from ./dietnerf. The scripts assume you are running one script at a time on a server with 8 NVIDIA GPUs.

cd dietnerf
export WANDB_ENTITY=
   
    

# NeRF baselines
sh scripts/run_synthetic_nerf_100v.sh
sh scripts/run_synthetic_nerf_8v.sh
sh scripts/run_synthetic_simplified_nerf_8v.sh

# DietNeRF with 8 observed views
sh scripts/run_synthetic_dietnerf_8v.sh
sh scripts/run_synthetic_dietnerf_ft_8v.sh

# NeRF and DietNeRF with partial observability
sh scripts/run_synthetic_unseen_side_14v.sh

   

Experiments on the DTU dataset

Coming soon. Our paper also fine-tunes pixelNeRF on DTU scenes for 1-shot view synthesis.

Citation and acknowledgements

If DietNeRF is relevant to your project, please cite our associated paper:

@InProceedings{Jain_2021_ICCV,
    author    = {Jain, Ajay and Tancik, Matthew and Abbeel, Pieter},
    title     = {Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {5885-5894}
}

This code is based on Yen-Chen Lin's PyTorch implementation of NeRF and the official pixelNeRF code.

Owner
Ajay Jain
AI PhD at Berkeley
Ajay Jain
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
PyTorch code for ICLR 2021 paper Unbiased Teacher for Semi-Supervised Object Detection

Unbiased Teacher for Semi-Supervised Object Detection This is the PyTorch implementation of our paper: Unbiased Teacher for Semi-Supervised Object Detection

Facebook Research 366 Dec 28, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
Object detection evaluation metrics using Python.

Object detection evaluation metrics using Python.

Louis Facun 2 Sep 06, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
Video-based open-world segmentation

UVO_Challenge Team Alpes_runner Solutions This is an official repo for our UVO Challenge solutions for Image/Video-based open-world segmentation. Our

Yuming Du 84 Dec 22, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

DV Lab 115 Dec 23, 2022
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022