Safe Policy Optimization with Local Features

Overview

Safe Policy Optimization with Local Feature (SPO-LF)

This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization with Local Generalized Linear Function Approximations" which was presented in NeurIPS-21.

Installation

There is requirements.txt in this repository. Except for the common modules (e.g., numpy, scipy), our source code depends on the following modules.

We also provide Dockerfile in this repository, which can be used for reproducing our grid-world experiment.

Simulation configuration

We manage the simulation configuration using hydra. Configurations are listed in config.yaml. For example, the algorithm to run should be chosen from the ones we implemented:

sim_type: {safe_glm, unsafe_glm, random, oracle, safe_gp_state, safe_gp_feature, safe_glm_stepwise}

Grid World Experiment

The source code necessary for our grid-world experiment is contained in /grid_world folder. To run the simulation, for example, use the following commands.

cd grid_world
python main.py sim_type=safe_glm env.reuse_env=False

For the monte carlo simulation while comparing our proposed method with baselines, use the shell file, run.sh.

We also provide a script for visualization. If you want to render how the agent behaves, use the following command.

python main.py sim_type=safe_glm env.reuse_env=True

Safety-Gym Experiment

The source code necessary for our safety-gym experiment is contained in /safety_gym_discrete folder. Our experiment is based on safety-gym. Our proposed method utilize dynamic programming algorithms to solve Bellman Equation, so we modified engine.py to discrtize the environment. We attach modified safety-gym source code in /safety_gym_discrete/engine.py. To use the modified library, please clone safety-gym, then replace safety-gym/safety_gym/envs/engine.py using /safety_gym_discrete/engine.py in our repo. Using the following commands to install the modified library:

cd safety_gym
pip install -e .

Note that MuJoCo licence is needed for installing Safety-Gym. To run the simulation, use the folowing commands.

cd safety_gym_discrete
python main.py sim_idx=0

We compare our proposed method with three notable baselines: CPO, PPO-Lagrangian, and TRPO-Lagrangian. The baseline implementation depends on safety-starter-agents. We modified run_agent.py in the repo source code.

To run the baseline, use the folowing commands.

cd safety_gym_discrete/baseline
python baseline_run.py sim_type=cpo

The environment that agent runs on is generated using generate_env.py. We provide 10 50*50 environments. If you want to generate other environments, you can change the world shape in safety_gym_discrete.py, and running the following commands:

cd safety_gym_discrete
python generate_env.py

Citation

If you find this code useful in your research, please consider citing:

@inproceedings{wachi_yue_sui_neurips2021,
  Author = {Wachi, Akifumi and Wei, Yunyue and Sui, Yanan},
  Title = {Safe Policy Optimization with Local Generalized Linear Function Approximations},
  Booktitle  = {Neural Information Processing Systems (NeurIPS)},
  Year = {2021}
}
Owner
Akifumi Wachi
Akifumi Wachi
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
PyTorch implementation of Pointnet2/Pointnet++

Pointnet2/Pointnet++ PyTorch Project Status: Unmaintained. Due to finite time, I have no plans to update this code and I will not be responding to iss

Erik Wijmans 1.2k Dec 29, 2022
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code πŸ“« Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn?

Domain Adaptation with Invariant RepresentationLearning: What Transformations to Learn? Repository Structure: DSAN |└───amazon |    └── dataset (Amazo

DMIRLAB 17 Jan 04, 2023
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
wlad 2 Dec 19, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022