Safe Policy Optimization with Local Features

Overview

Safe Policy Optimization with Local Feature (SPO-LF)

This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization with Local Generalized Linear Function Approximations" which was presented in NeurIPS-21.

Installation

There is requirements.txt in this repository. Except for the common modules (e.g., numpy, scipy), our source code depends on the following modules.

We also provide Dockerfile in this repository, which can be used for reproducing our grid-world experiment.

Simulation configuration

We manage the simulation configuration using hydra. Configurations are listed in config.yaml. For example, the algorithm to run should be chosen from the ones we implemented:

sim_type: {safe_glm, unsafe_glm, random, oracle, safe_gp_state, safe_gp_feature, safe_glm_stepwise}

Grid World Experiment

The source code necessary for our grid-world experiment is contained in /grid_world folder. To run the simulation, for example, use the following commands.

cd grid_world
python main.py sim_type=safe_glm env.reuse_env=False

For the monte carlo simulation while comparing our proposed method with baselines, use the shell file, run.sh.

We also provide a script for visualization. If you want to render how the agent behaves, use the following command.

python main.py sim_type=safe_glm env.reuse_env=True

Safety-Gym Experiment

The source code necessary for our safety-gym experiment is contained in /safety_gym_discrete folder. Our experiment is based on safety-gym. Our proposed method utilize dynamic programming algorithms to solve Bellman Equation, so we modified engine.py to discrtize the environment. We attach modified safety-gym source code in /safety_gym_discrete/engine.py. To use the modified library, please clone safety-gym, then replace safety-gym/safety_gym/envs/engine.py using /safety_gym_discrete/engine.py in our repo. Using the following commands to install the modified library:

cd safety_gym
pip install -e .

Note that MuJoCo licence is needed for installing Safety-Gym. To run the simulation, use the folowing commands.

cd safety_gym_discrete
python main.py sim_idx=0

We compare our proposed method with three notable baselines: CPO, PPO-Lagrangian, and TRPO-Lagrangian. The baseline implementation depends on safety-starter-agents. We modified run_agent.py in the repo source code.

To run the baseline, use the folowing commands.

cd safety_gym_discrete/baseline
python baseline_run.py sim_type=cpo

The environment that agent runs on is generated using generate_env.py. We provide 10 50*50 environments. If you want to generate other environments, you can change the world shape in safety_gym_discrete.py, and running the following commands:

cd safety_gym_discrete
python generate_env.py

Citation

If you find this code useful in your research, please consider citing:

@inproceedings{wachi_yue_sui_neurips2021,
  Author = {Wachi, Akifumi and Wei, Yunyue and Sui, Yanan},
  Title = {Safe Policy Optimization with Local Generalized Linear Function Approximations},
  Booktitle  = {Neural Information Processing Systems (NeurIPS)},
  Year = {2021}
}
Owner
Akifumi Wachi
Akifumi Wachi
Code Repository for The Kaggle Book, Published by Packt Publishing

The Kaggle Book Data analysis and machine learning for competitive data science Code Repository for The Kaggle Book, Published by Packt Publishing "Lu

Packt 1.6k Jan 07, 2023
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
TensorFlow Tutorial and Examples for Beginners (support TF v1 & v2)

TensorFlow Examples This tutorial was designed for easily diving into TensorFlow, through examples. For readability, it includes both notebooks and so

Aymeric Damien 42.5k Jan 08, 2023
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
PyTorch implementation of Higher Order Recurrent Space-Time Transformer

Higher Order Recurrent Space-Time Transformer (HORST) This is the official PyTorch implementation of Higher Order Recurrent Space-Time Transformer. Th

13 Oct 18, 2022