Safe Policy Optimization with Local Features

Overview

Safe Policy Optimization with Local Feature (SPO-LF)

This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization with Local Generalized Linear Function Approximations" which was presented in NeurIPS-21.

Installation

There is requirements.txt in this repository. Except for the common modules (e.g., numpy, scipy), our source code depends on the following modules.

We also provide Dockerfile in this repository, which can be used for reproducing our grid-world experiment.

Simulation configuration

We manage the simulation configuration using hydra. Configurations are listed in config.yaml. For example, the algorithm to run should be chosen from the ones we implemented:

sim_type: {safe_glm, unsafe_glm, random, oracle, safe_gp_state, safe_gp_feature, safe_glm_stepwise}

Grid World Experiment

The source code necessary for our grid-world experiment is contained in /grid_world folder. To run the simulation, for example, use the following commands.

cd grid_world
python main.py sim_type=safe_glm env.reuse_env=False

For the monte carlo simulation while comparing our proposed method with baselines, use the shell file, run.sh.

We also provide a script for visualization. If you want to render how the agent behaves, use the following command.

python main.py sim_type=safe_glm env.reuse_env=True

Safety-Gym Experiment

The source code necessary for our safety-gym experiment is contained in /safety_gym_discrete folder. Our experiment is based on safety-gym. Our proposed method utilize dynamic programming algorithms to solve Bellman Equation, so we modified engine.py to discrtize the environment. We attach modified safety-gym source code in /safety_gym_discrete/engine.py. To use the modified library, please clone safety-gym, then replace safety-gym/safety_gym/envs/engine.py using /safety_gym_discrete/engine.py in our repo. Using the following commands to install the modified library:

cd safety_gym
pip install -e .

Note that MuJoCo licence is needed for installing Safety-Gym. To run the simulation, use the folowing commands.

cd safety_gym_discrete
python main.py sim_idx=0

We compare our proposed method with three notable baselines: CPO, PPO-Lagrangian, and TRPO-Lagrangian. The baseline implementation depends on safety-starter-agents. We modified run_agent.py in the repo source code.

To run the baseline, use the folowing commands.

cd safety_gym_discrete/baseline
python baseline_run.py sim_type=cpo

The environment that agent runs on is generated using generate_env.py. We provide 10 50*50 environments. If you want to generate other environments, you can change the world shape in safety_gym_discrete.py, and running the following commands:

cd safety_gym_discrete
python generate_env.py

Citation

If you find this code useful in your research, please consider citing:

@inproceedings{wachi_yue_sui_neurips2021,
  Author = {Wachi, Akifumi and Wei, Yunyue and Sui, Yanan},
  Title = {Safe Policy Optimization with Local Generalized Linear Function Approximations},
  Booktitle  = {Neural Information Processing Systems (NeurIPS)},
  Year = {2021}
}
Owner
Akifumi Wachi
Akifumi Wachi
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.

LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t

Andrew Patton 5 Nov 23, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023