Official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis.

Overview

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis. Details are listed below:

  1. The config file for the experiments are under the directory of configs/.
  2. The pruning algorithms are in pruner/. Please note that:
    (1) fisher_diag_pruner.py implements C-OBD.
    (2) kfac_eigen_pruner.py implements EigenDamage.
    (3) kfac_full_pruner.py implements C-OBS.
    (4) kfac_OBD_F2.py implements kron-OBD.
    (5) kfac_OBS_F2.py implements kron-OBS.
    (6) kfac_eigen_svd_pruner.py implements EigenDamage Depthwise Separable.

Requirements

Python3.6, Pytorch 0.4.1

pip install https://download.pytorch.org/whl/cu90/torch-0.4.1-cp36-cp36m-linux_x86_64.whl
pip install torchvision
pip install tqdm
pip install tensorflow
pip install tensorboardX
pip install easydict
pip install scikit-tensor

Dataset

  1. Download tiny imagenet from "https://tiny-imagenet.herokuapp.com", and place it in ../data/tiny_imagenet. Please make sure there will be two folders, train and val, under the directory of ../data/tiny_imagenet. In either train or val, there will be 200 folders storing the images of each category.

  2. For cifar datasets, it will be automatically downloaded.

How to run?

1. Pretrain model

You can also download the pretrained model from https://drive.google.com/file/d/1hMxj6NUCE1RP9p_ZZpJPhryk2RPU4I-_/view?usp=sharing.

# for pretraining CIFAR10/CIFAR100
$ python main_pretrain.py --learning_rate 0.1 --weight_decay 0.0002 --dataset cifar10 --epoch 200

# for pretraining Tiny-ImageNet
$ python main_pretrain.py --learning_rate 0.1 --weight_decay 0.0002 --dataset tiny_imagenet --epoch 300

2. Pruning

# for pruning with EigenDamage, CIFAR10, VGG19 (one pass)
$ python main_prune.py --config ./configs/exp_for_cifar/cifar10/vgg19/one_pass/base/kfacf_eigen_base.json

# for pruning with EigenDamage, CIFAR100, VGG19
$ python main_prune.py --config ./configs/exp_for_cifar/cifar100/vgg19/one_pass/base/kfacf_eigen_base.json

# for pruning with EigenDamage, TinyImageNet, VGG19
$ python main_prune.py --config ./configs/exp_for_tiny_imagenet/tiny_imagenet/vgg19/one_pass/base/kfacf_eigen_base.json

# for pruning with EigenDamage + Depthwise separable, CIFAR100, VGG19
$ python main_prune_separable.py --config ./configs/exp_for_svd/cifar100/vgg19/one_pass/base/svd_eigendamage.json

Contact

If you have any questions or suggestions about the code or paper, please do not hesitate to contact with Chaoqi Wang([email protected] or [email protected]) and Guodong Zhang([email protected] or [email protected]).

Citation

To cite this work, please use

@InProceedings{wang2019eigen,
  title = 	 {{E}igen{D}amage: Structured Pruning in the {K}ronecker-Factored Eigenbasis},
  author = 	 {Wang, Chaoqi and Grosse, Roger and Fidler, Sanja and Zhang, Guodong},
  booktitle = 	 {Proceedings of the 36th International Conference on Machine Learning},
  pages = 	 {6566--6575},
  year = 	 {2019},
  volume = 	 {97},
  publisher = {PMLR},
  pdf = 	 {http://proceedings.mlr.press/v97/wang19g/wang19g.pdf},
  url = 	 {http://proceedings.mlr.press/v97/wang19g.html},
}

Owner
Chaoqi Wang
Machine learning
Chaoqi Wang
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.

878 Dec 30, 2022
PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions

Kim Seonghyeon 433 Dec 27, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL components from published papers, standardized evaluation, and experiment management.

GCL: Graph Contrastive Learning Library for PyTorch 592 Jan 07, 2023
TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

1k Dec 28, 2022
PyTorch to TensorFlow Lite converter

PyTorch to TensorFlow Lite converter

Omer Ferhat Sarioglu 140 Dec 13, 2022
Distiller is an open-source Python package for neural network compression research.

Wiki and tutorials | Documentation | Getting Started | Algorithms | Design | FAQ Distiller is an open-source Python package for neural network compres

Intel Labs 4.1k Dec 28, 2022
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Jan 06, 2023
On the Variance of the Adaptive Learning Rate and Beyond

RAdam On the Variance of the Adaptive Learning Rate and Beyond We are in an early-release beta. Expect some adventures and rough edges. Table of Conte

Liyuan Liu 2.5k Dec 27, 2022
270 Dec 24, 2022
PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

PyTorch Lightning Optical Flow models, scripts, and pretrained weights.

Henrique Morimitsu 105 Dec 16, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch.

Tez: a simple pytorch trainer NOTE: Currently, we are not accepting any pull requests! All PRs will be closed. If you want a feature or something does

abhishek thakur 1.1k Jan 04, 2023
Code snippets created for the PyTorch discussion board

PyTorch misc Collection of code snippets I've written for the PyTorch discussion board. All scripts were testes using the PyTorch 1.0 preview and torc

461 Dec 26, 2022
A simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision

🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.

Hugging Face 3.5k Jan 08, 2023
You like pytorch? You like micrograd? You love tinygrad! ❤️

For something in between a pytorch and a karpathy/micrograd This may not be the best deep learning framework, but it is a deep learning framework. Due

George Hotz 9.7k Jan 05, 2023
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.

PyTorch Implementation of Differentiable ODE Solvers This library provides ordinary differential equation (ODE) solvers implemented in PyTorch. Backpr

Ricky Chen 4.4k Jan 04, 2023
Learning Sparse Neural Networks through L0 regularization

Example implementation of the L0 regularization method described at Learning Sparse Neural Networks through L0 regularization, Christos Louizos, Max W

AMLAB 202 Nov 10, 2022
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.

PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie

Google Research 1.2k Jan 04, 2023
Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Martin Krasser 251 Dec 25, 2022