PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

Related tags

Deep Learningdro-sfm
Overview

DRO: Deep Recurrent Optimizer for Structure-from-Motion

This is the official PyTorch implementation code for DRO-sfm. For technical details, please refer to:

DRO: Deep Recurrent Optimizer for Structure-from-Motion
Xiaodong Gu*, Weihao Yuan*, Zuozhuo Dai, Chengzhou Tang, Siyu Zhu, Ping Tan
[Paper]

Bibtex

If you find this code useful in your research, please cite:

@article{gu2021dro,
  title={DRO: Deep Recurrent Optimizer for Structure-from-Motion},
  author={Gu, Xiaodong and Yuan, Weihao and Dai, Zuozhuo and Tang, Chengzhou and Zhu, Siyu and Tan, Ping},
  journal={arXiv preprint arXiv:2103.13201},
  year={2021}
}

Contents

  1. Install
  2. Datasets
  3. Training
  4. Evaluation
  5. Models

Install

  • We recommend using nvidia-docker2 to have a reproducible environment.
git clone https://github.com/aliyun/dro-sfm.git
cd dro-sfm
sudo make docker-build
sudo make docker-start-interactive

You can also download the built docker directly from dro-sfm-image.tar

docker load < dro-sfm-image.tar
  • If you do not use docker, you could create an environment following the steps in the Dockerfile.
# Environment variables
export PYTORCH_VERSION=1.4.0
export TORCHVISION_VERSION=0.5.0
export NCCL_VERSION=2.4.8-1+cuda10.1
export HOROVOD_VERSION=65de4c961d1e5ad2828f2f6c4329072834f27661
# Install NCCL
sudo apt-get install libnccl2=${NCCL_VERSION} libnccl-dev=${NCCL_VERSION}

# Install Open MPI
mkdir /tmp/openmpi && \
    cd /tmp/openmpi && \
    wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-4.0.0.tar.gz && \
    tar zxf openmpi-4.0.0.tar.gz && \
    cd openmpi-4.0.0 && \
    ./configure --enable-orterun-prefix-by-default && \
    make -j $(nproc) all && \
    make install && \
    ldconfig && \
    rm -rf /tmp/openmpi

# Install PyTorch
pip install torch==${PYTORCH_VERSION} torchvision==${TORCHVISION_VERSION} && ldconfig

# Install horovod (for distributed training)
sudo ldconfig /usr/local/cuda/targets/x86_64-linux/lib/stubs && HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL HOROVOD_WITH_PYTORCH=1 pip install --no-cache-dir git+https://github.com/horovod/horovod.git@${HOROVOD_VERSION} && sudo ldconfig

To verify that the environment is setup correctly, you can run a simple overfitting test:

# download a tiny subset of KITTI
cd dro-sfm
curl -s https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/dro-sfm/datasets/KITTI_tiny.tar | tar xv -C /data/datasets/kitti/
# in docker
./run.sh "python scripts/train.py configs/overfit_kitti_mf_gt.yaml" log.txt

Datasets

Datasets are assumed to be downloaded in /data/datasets/ (can be a symbolic link).

KITTI

The KITTI (raw) dataset used in our experiments can be downloaded from the KITTI website. For convenience, you can download data from packnet or here

Tiny KITTI

For simple tests, you can download a "tiny" version of KITTI:

Scannet

The Scannet (raw) dataset used in our experiments can be downloaded from the Scannet website. For convenience, you can download data from here

DeMoN

Download DeMoN.

bash download_traindata.sh
python ./dataset/preparation/preparedata_train.py
bash download_testdata.sh
python ./dataset/preparation/preparedata_test.py

Training

Any training, including fine-tuning, can be done by passing either a .yaml config file or a .ckpt model checkpoint to scripts/train.py:

# kitti, checkpoints will saved in ./results/mdoel/
./run.sh 'python scripts/train.py  configs/train_kitti_mf_gt.yaml' logs/kitti_sup.txt
./run.sh 'python scripts/train.py  configs/train_kitti_mf_selfsup.yaml' logs/kitti_selfsup.txt 

# scannet
./run.sh 'python scripts/train.py  configs/train_scannet_mf_gt_view3.yaml' logs/scannet_sup.txt
./run.sh 'python scripts/train.py  configs/train_scannet_mf_selfsup_view3.yaml' logs/scannet_selfsup.txt
./run.sh 'python scripts/train.py  configs/train_scannet_mf_gt_view5.yaml' logs/scannet_sup_view5.txt

# demon
./run.sh 'python scripts/train.py  configs/train_demon_mf_gt.yaml' logs/demon_sup.txt

Evaluation

python scripts/eval.py --checkpoint <checkpoint.ckpt> [--config <config.yaml>]
# example:kitti, results will be saved in results/depth/
python scripts/eval.py --checkpoint ckpt/outdoor_kitti.ckpt --config configs/train_kitti_mf_gt.yaml

You can also directly run inference on a single image or video:

# video or folder
# indoor-scannet 
python scripts/infer_video.py --checkpoint ckpt/indoor_sacnnet.ckpt --input /path/to/video or folder --output /path/to/save_folder --sample_rate 1 --data_type scannet --ply_mode 
 # indoor-general
python scripts/infer_video.py --checkpoint ckpt/indoor_sacnnet.ckpt --input /path/to/video or folder --output /path/to/save_folder --sample_rate 1 --data_type general --ply_mode

# outdoor
python scripts/infer_video.py --checkpoint ckpt/outdoor_kitti.ckpt --input /path/to/video or folder --output /path/to/save_folder --sample_rate 1 --data_type kitti --ply_mode 

# image
python scripts/infer.py --checkpoint <checkpoint.ckpt> --input <image or folder> --output <image or folder>

Models

Model Abs.Rel. Sqr.Rel RMSE RMSElog a1 a2 a3 SILog L1_inv rot_ang t_ang t_cm
Kitti_sup 0.045 0.193 2.570 0.080 0.971 0.994 0.998 0.079 0.003 - - -
Kitti_selfsup 0.053 0.346 3.037 0.102 0.962 0.990 0.996 0.101 0.004 - - -
scannet_sup 0.053 0.017 0.165 0.080 0.967 0.994 0.998 0.078 0.033 0.472 9.297 1.160
scannet_sup(view5) 0.047 0.014 0.151 0.072 0.976 0.996 0.999 0.071 0.030 0.456 8.502 1.163
scannet_selfsup 0.143 0.345 0.656 0.274 0.896 0.954 0.969 0.272 0.106 0.609 10.779 1.393

Acknowledgements

Thanks to Toyota Research Institute for opening source of excellent work packnet-sfm. Thanks to Zachary Teed for opening source of his excellent work RAFT.

Owner
Alibaba Cloud
More Than Just Cloud
Alibaba Cloud
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022