A task-agnostic vision-language architecture as a step towards General Purpose Vision

Related tags

Deep Learninggpv-1
Overview

Towards General Purpose Vision Systems

By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem

teaser

Overview

Welcome to the official code base for GPV-I - a general purpose vision-language architecture that can learn and perform any task that requires bounding boxes or text prediction. We demonstrate the effectiveness of GPV-I by jointly training it on VQA, Captioning, Localization, and Classification tasks and achieveing favorable performance in comparison to specialized single-task models.

Available on Arxiv: https://arxiv.org/abs/2104.00743

Project Page: https://prior.allenai.org/projects/gpv

Demo: https://vision-explorer.allenai.org/general_purpose_vision

BibTex:

@article{Gupta2021GPV,
  title={Towards General Purpose Vision Systems},
  author={Tanmay Gupta and A. Kamath and Aniruddha Kembhavi and Derek Hoiem},
  journal={ArXiv},
  year={2021},
  volume={abs/2104.00743}
}

Clone repository

git clone --recurse-submodules [email protected]:allenai/gpv-1.git

Install dependencies

Create conda environment

conda create -n gpv python=3.6 -y
conda activate gpv

Install libraries

bash setup_conda_env.sh

Paths

Decide the following paths:

  • <data_dir>: This is the directory where images and annotations will be saved
  • <output_dir>: This is where outputs of various experiments will be saved including model checkpoints, visualization, inference and evaluation results

<data_dir> and <output_dir> refer to these absolute paths in the instructions below.

Download data

To study generalization of concepts across skills, we created a new split of COCO annotations - COCO-SCE. To download the original and our new split, pretrained DETR checkpoints on both splits run the following:

bash setup_data.sh <data_dir>

Note - If you intend to run experiments only on COCO-SCE, you can skip downloading COCO test images and save time and disk space by setting download_coco_test_images=False in setup_data.sh

Download model

Model Split Download
GPV COCO Link
GPV COCO-SCE Link

To use any of these models, download them into <output_dir>/<exp_name>/ckpts directory as follows:

wget <link> -P <output_dir>/<exp_name>/ckpts/

<exp_name> could be any directory name of your choice such as gpv_coco or gpv_coco_sce.

Test the model interactively

We provide easy to use interactive IPython notebooks where you may provide an image and a natural language task description and visualize the models outputs, namely - bounding boxes for relevant image regions and text answer. Note that while some tasks might expect only one of the output modalities, the model always outputs both. For example, the model outputs relevant regions during captioning and text during localization. These auxiliary outputs may be unsolicited but often provide useful and diagnostic information.

We provide the following notebooks:

  • inference.ipynb: This demonstrates inference for GPV-1 using greedy inference for text decoding as used in all experiments in our paper.
  • inference_beam_search.ipynb: Post-submission, we implemented beam search! This also allows greedy inference by setting beam size to 1. This also allows sampling multiple high ranking text outputs which is especially useful for tasks with multiple plausible outputs such as captioning.

We also provide equivalent .py scripts to run inference on a single image and task description pair. To run these scripts update output_dir, ckpt, inputs.img, and inputs.query in configs/exp/gpv_inference_cmdline.yaml.

For inference with beam search run:

python -m inference_beam_search beam_size=5

For greedy decoding either set beam_size to 1 in the previous command or run the following:

python -m inference

Train model

We provide scripts for training GPV on one or more of the following tasks:

  • CocoClassification
  • CocoVqa
  • CocoDetection (refered to as the Localization task in the paper)
  • CocoCaptioning

Training GPV-1 involves 3 steps:

  • Step 1: Update the configs/exp/gpv.yaml file. Here are the key parameters to consider (the ones marked with a star will be set later in Step 3):

    • num_gpus_per_node (set to 4 if you have 24GB GPUs, 2 for 48GB, and 1 for 80GB)
    • dist_url
    • output_dir *
    • data_dir *
    • model.pretr_detr *
  • Step 2: Decide the dataset or combination of supported datasets to train the model. This is specified through one of the files in configs/learning_datasets. For instance, all.yaml trains on all 4 tasks, cap_vqa.yaml trains on CocoCaptioning & CocoVqa, and cap.yaml trains only on CocoCaptioning. If you don't see a dataset combination you may add one by modifying all.yaml. We refer to the name of the chosen yaml file without the extension by <learning_datasets>

  • Step 3: Launch training as follows:

    bash exp/gpv/scripts/train.sh <learning_datasets> <data_split> <exp_name> <output_dir> <data_dir>
    

    Note that training comprises of 2 sub-steps. First, the model is trained for training.frozen_epochs (in configs/exp/gpv.yaml) steps with DETR weights frozen. Then the model is finetuned end-to-end for a total of training.num_epochs epochs. train_gpv.sh executes both steps sequentially. model.pretr_detr is selected automatically in train.sh based on <data_split>.

  • Step 4: Visualize loss, metrics, and learning rate on tensorboard:

    tensorboard --logdir=<output_dir> --bind_all
    
  • Step 5: Predictions are visualized on a small set of train and validation set samples every few thousand iterations (training.vis_step). These are available at <output_dir>/<exp_name>/training_visualizations

Evaluation

We provide evaluation code for the following tasks:

  • CocoClassification
  • CocoVqa
  • CocoDetection (refered to as the Localization task in the paper)
  • CocoCaptioning
  • RefCocop

Run the following command to evaluate on one or a set of tasks

bash exp/gpv/scripts/eval.sh <exp_name> <task_name> <subset> <split> <output_dir> <data_dir>
  • <exp_name>: name of the experiment directory (<output_dir>/<exp_name>) where the model to be evaluated lives.
  • <task_name>: set to all to evaluate on all 5 tasks, all_but_refexp to evalute on all tasks excepts RefCocop, or the name of tasks to evaluate only on that task.
  • <subset>: set to train or val for COCO (no test since COCO test annotations are hidden) and train, val, or test for COCO-SCE.
  • <split>: set to original_split (COCO) or gpv_split (COCO-SCE). This flag is unused for RefCocop.

Predictions and metrics are saved at <output_dir>/<exp_name>/eval.

If you wish to evaluate captioning or vqa performnce on the COCO test images, we provide scripts to generate predictions in the format expected by their respective official evaluation servers (Captioning eval server, VQA eval server). You may run these as follows:

bash exp/gpv/scripts/eval_<cap/vqa>_test.sh <exp_name> <subset> <output_dir> <data_dir>

<subset> may be test or testdev for VQA and val or test for Captioning.

Finetune GPV-1

GPV-1 can be finetuned on your data. To evaluate GPV-1's learning efficiency and extent of catastrophic forgetting, we provide scripts to finetune GPV on RefCocop. These scripts may also be used as an example of finetuning GPV on your own data.

To finetune pretrained GPV-1 on RefCocop, run the following

bash exp/gpv/scripts/ft_gpv.sh <ckpt> <train_perc> <output_dir> <data_dir>
  • <ckpt>: absolute path of the GPV-1 checkpoint that you want to initialize the training with
  • <train_perc>: percentage of the full Refcocop training set to use for learning. Supported values include 1, 2, 5, 10, 25, 50, 75, 100. These subsampled subsets can be found in <data_dir>/learning_phase_data/refcocop/

The evaluation script described in the previous section works for Refcocop evaluation as well.

A note on GPU memory requirements

  • The current hyperparameters are chosen for training GPV-1 with a batch size of 120 samples. This leads to significant GPU memory requirements during training (e.g. 5-7 days of training on four 24GB GPUs).
  • While training is memory intensive, evaluation is easily run on a single GPU (you may further reduce batch size for evaluation using eval.batch_size flag in gpv.yaml file if working with low memory GPUs).
  • It may be possible to trade-off GPU memory with training time by reducing training batch size using the training.batch_size flag. However, this might require tuning the hyperparameters to achieve competitive performance.
  • Finally, if working with COCO-like data or when finetuning from a pretrained GPV-1 checkpoint, you might be able to get good performance with low GPU memory requirements by freezing the DETR backbone (training.freeze=True) and only training the remaining modules.
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Omniscient Video Super-Resolution

Omniscient Video Super-Resolution This is the official code of OVSR (Omniscient Video Super-Resolution, ICCV 2021). This work is based on PFNL. Datase

36 Oct 27, 2022
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022