Multi-angle c(q)uestion answering

Related tags

Deep Learningmacaw
Overview

Macaw

Introduction

Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside the domains it was trained on. It has been trained in "multi-angle" fashion, which means it can handle a flexible set of input and output "slots" (like question, answer, explanation) .

Macaw was built on top of T5 and comes in different sizes: macaw-11b, macaw-3b, and macaw-large, as well as an answer-focused version featured on various leaderboards: macaw-answer-11b (see below).

Examples

Some suggestive examples from the Macaw (11B) model, for different angles:

  • (Q→A) Given a question, what's the answer?
    Q: James went camping in the woods, but forgot to bring a hammer to bang the tent pegs in. What else might he use?
    → A: rocks

  • (QM→A) Given a question and answer choices, what's the answer?
    Q: James went camping in the woods, but forgot to bring a hammer to bang the tent pegs in. What else might he use?
    M: (A) a leaf (B) a log (C) a worm
    → A: a log

  • (Q→AE) Given a question, what's the answer and an explanation?
    Q: Which force pulls objects to the ground?
    → A: gravity
    → E: Gravitational force causes objects that have mass to be pulled down on a planet.

  • (A→QE) Given an answer, what's a plausible question and explanation?
    A: elephant
    → Q: Which animal has the largest ears?
    → E: The ears of an elephant are the largest.

  • (C→QA) Given a context, what's a plausible question and answer?
    C: A car needs a battery to start.
    → Q: What is required for a car to start?
    → A: battery

For many more examples of the basic Q→A angle, see examples.md.

Usage examples

Macaw can easily be used in the Hugging Face transformers library, as shown here for the smallest model (the smallest model is not generally recommended, but has much smaller footprint), where given a question we want to return an answer and suggested multiple-choice answer options.

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("allenai/macaw-large")
model = AutoModelForSeq2SeqLM.from_pretrained("allenai/macaw-large")
input_string = "$answer$ ; $mcoptions$ ; $question$ = What is the color of a cloudy sky?"
input_ids = tokenizer.encode(input_string, return_tensors="pt")
output = model.generate(input_ids, max_length=200)

>>> tokenizer.batch_decode(output, skip_special_tokens=True)
['$answer$ = gray ; $mcoptions$ = (A) blue (B) white (C) grey (D) white']

(run pip install -r requirements.txt if any dependencies are missing). Note there's no guarantee the different slots are fully coherent, as in gray/grey (and duplicate "white") here, more so for the macaw-large model vs the larger ones.

The code in macaw/utils.py includes some convenience wrappers, such as load_model and run_macaw, here are some examples loading the macaw-11b model onto two GPUs (need around 48GB total GPU memory for the largest model to work):

from macaw.utils import load_model, run_macaw
model_dict = load_model("allenai/macaw-11b", cuda_devices=[0,1])
res1 = run_macaw("Q: Which force pulls objects to the ground?\nA\nE", model_dict)
# Alternate input syntax
res2 = run_macaw({"Q:":"Which force causes a compass needle to point north?", "A":""}, model_dict)
# Add sampling options for the output
res3 = run_macaw("Q: Which force pulls objects to the ground?\nA\nE", model_dict, {"do_sample": True, "temperature": 2.0})

>>> [print(res["output_slots_list"][0]) for res in [res1, res2, res3]]
{'answer': 'gravity', 'explanation': 'Gravitational force causes objects that have mass to be pulled down on a planet.'}
{'answer': 'magnetism'}
{'answer': 'gravitional force', 'explanation': 'Gravitational force causes objects that have mass to be pulled down on a planet.'}

For batch evaluation of instances at various angles, see macaw/batch_eval.py for pointers.

Supported slots

Here are the slots available in Macaw, generally applicable for both input and output:

Slot name Description Example
question (Q) Question text What is the color of a cloudy sky?
answer (A) Answer text The sky is blue
mcoptions (M) Multiple-choice answer options (A) blue (B) white (C) grey
context (C) Potentially relevant context (noisy IR) The sky looks blue to us because...
explanation (E) Sentences explaining the answer A cloudy sky is usually gray in color...

An angle is a specific set of input/output slots, for instance QM->AE is the task of producing answer and explanation, given a question and multiple-choice options. Macaw is trained on a wide variety of angles and handles unseen angles as well, one exception is that the context (C) only appears as an input slot in the training data.

The Challenge300 dataset of probing questions

The Challenge300 dataset of 300 diverse probing examples can be found in challenge300-probes-v1.jsonl. The basic Q→A output from Macaw (at different sizes), as well as outputs from GPT3, Jurassic-1 and alternate T5 models trained on NaturalQuestions, can be seen in examples.md.

Demo

See DEMO.md for instructions and code to host an interactive version of Macaw.

Training data

Macaw was trained in two steps from the text-to-text transformer model T5:

  1. Multi-angle version of UnifiedQA by fine-tuning T5 on the following 7 datasets and associated angles:

  2. Further fine-tuning of Multi-Angle UnifiedQA on multiple-choice and direct-answer elementary science questions, along with (up to 5) explanation sentences from WorldTreeV2:

    • ARC: QMC→AE, AQC→M, QMEC→A, QME→A, QE→A, QMC→A, QC→AE, QM→AE, QMAC→E, QMA→E
    • ARC-DA: QC→AE, Q→AE, QC→A, Q→A, QEC→A, QE→A, AE→Q, AC→Q, QA→E, AQC→E
  3. A specialized answer-focused model, macaw-answer-11b (called "UnifiedQA + ARC MC/DA + IR" on the leaderboards for ARC, ARC-Easy, and ARC-DA) was trained on a smaller set of angles, not including explanations:

    • ARC: QMC→A, QAC→M, QC→A, QM→A, MAC→Q, AC→QM, M→QA
    • ARC-DA: QC→A, Q→A, AC→Q, C→QA

Available models

The Macaw models can be accessed from the Hugging Face model hub:

For a sense of the degradation in performance for the smaller sizes, here are baseline scores on the ARC Challenge and ARC Easy multiple-choice development questions. Included are variants with and without IR context from a large science corpus (corresponding to angles QMC→A and QM→A respectively).

Model ARC Challenge ARC Challenge (no IR) ARC Easy ARC Easy (no IR)
Macaw (11B) 76.9 74.6 91.2 84.9
Macaw-3B 68.2 67.9 87.9 77.7
Macaw-large 57.2 50.5 82.5 63.9
Macaw-answer (11B) 79.9 75.2 90.5 85.8

Disclaimer

As a model capable of generating free form text, the output of the model is not guaranteed to be free of offensive material, so appropriate caution is advised when using the model.

Citation

If you use Macaw in your work, please reference the related paper using

@article{Tafjord2021Macaw,
  title={General-Purpose Question-Answering with {M}acaw},
  author={Oyvind Tafjord and Peter Clark},
  journal={ArXiv},
  year={2021},
  volume={abs/2109.02593}
}
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
A repo with study material, exercises, examples, etc for Devnet SPAUTO

MPLS in the SDN Era -- DevNet SPAUTO Get right to the study material: Checkout the Wiki! A lab topology based on MPLS in the SDN era book used for 30

Hugo Tinoco 67 Nov 16, 2022
To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types

To Design and Implement Logistic Regression to Classify Between Benign and Malignant Cancer Types, from a Database Taken From Dr. Wolberg reports his Clinic Cases.

Astitva Veer Garg 1 Jul 31, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
Classify the disease status of a plant given an image of a passion fruit

Passion Fruit Disease Detection I tried to create an accurate machine learning models capable of localizing and identifying multiple Passion Fruits in

3 Nov 09, 2021
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021