Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

Overview

LieTransformer

This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-attention for Lie Groups

Pattern recognition Molecular property prediction Particle Dynamics
Constellations Rotating molecule Particle trajectories

Introduction

LieTransformer is a equivariant Transformer-like model, built out of equivariant self attention layers (LieSelfAttention). The model can be made equivariant to any Lie group, simply by providing and implementation of the group of interest. A number of commonly used groups are already implemented, building off the work of LieConv. Switching group equivariance requires no change to model architecture, only passsing a different group to the model.

Architecture

The overall architecture of the LieTransformer is similar to the architecture of the original Transformer, interleaving series of attention layers and pointwise MLPs in residual blocks. The architecture of the LieSelfAttention blocks differs however, and can be seen below. For more details, please see the paper.

model diagram

Installation

To repoduce the experiments in this library, first clone the repo via https://github.com/anonymous-code-0/lie-transformer. To install the dependencies and create a virtual environment, execute setup_virtualenv.sh. Alternatively you can install the library and its dependencies without creating a virtual environment via pip install -e ..

To install the library as a dependency for another project use https://github.com/anonymous-code-0/lie-transformer.

Alternatively, you can install all the dependencies using pip install -r requirements.txt. If you do so, you will need to install the LieConv, Forge, and this repo itself (using the pip install -e command). Please note the version of LieConv used in this project is a slightly modified version of the original repo which fixes a bug for updated PyTorch versions.

Training a model

Example command to train a model (in this case the Set Transformer on the constellation dataset):

python3 scripts/train_constellation.py --data_config configs/constellation.py --model_config configs/set_transformer.py --run_name my_experiment --learning_rate=1e-4 --batch_size 128

The model and the dataset can be chosen by specifying different config files. Flags for configuring the model and the dataset are available in the respective config files. The project is using forge for configs and experiment management. Please refer to examples for details.

Counting patterns in the constellation dataset

The first task implemented is counting patterns in the constellation dataset. We generate a fixed dataset of constellations, where each constellation consists of 0-8 patterns; each pattern consists of corners of a shape. Currently available shapes are triangle, square, pentagon and an L. The task is to count the number of occurences of each pattern. To save to file the constellation datasets, run before training:

python3 scripts/data_to_file.py

Else, the constellation datasets are regenerated at the beginning of the training.

Dataset and model consistency

When changing the dataset parameters (e.g. number of patterns, types of patterns etc) make sure that the model parameters are adjusted accordingly. For example patterns=square,square,triangle,triangle,pentagon,pentagon,L,L means that there can be four different patterns, each repeated two times. That means that counting will involve four three-way classification tasks, and so that n_outputs and output_dim in classifier.py needs to be set to 4 and 3, respectively. All this can be set through command-line arguments.

Results

Constellations results

QM9

This dataset consists of 133,885 small inorganic molecules described by the location and charge of each atom in the molecule, along with the bonding structure of the molecule. The dataset includes 19 properties of each molecule, such as various rotational constants, energies and enthalpies. We aim to predict 12 of these properties.

python scripts/train_molecule.py \
    --run_name "molecule_homo" \
    --model_config "configs/molecule/eqv_transformer_model.py" \
    --model_seed 0
    --data_seed 0 \
    --task homo

Configurable scripts for running the experiments in the paper exist in the scripts folder, scripts/train_molecule_SE3transformer.sh, scripts/train_molecule_SE3lieconv.sh.

Results

QM9 results

Hamiltonian dynamics

In this experiment we aim to predict the trajectory of a number of particles connected together by a series of springs. This is done by learning the Hamiltonian of the system from observed trajectories.

The following command generates a dataset of trajectories and trains LieTransformer on it

T(2) default: python scripts/train_dynamics.py
SE(2) default: python scripts/train_dynamics.py --group 'SE(2)_canonical' --lift_samples 2 --num_layers 3 --dim_hidden 80

Results

Rollout MSE Example Trajectories
dynamics rollout trajectories

Contributing

Contributions are best developed in separate branches. Once a change is ready, please submit a pull request with a description of the change. New model and data configs should go into the config folder, and the rest of the code should go into the eqv_transformer folder.

Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
OpenMMLab Image and Video Editing Toolbox

Introduction MMEditing is an open source image and video editing toolbox based on PyTorch. It is a part of the OpenMMLab project. The master branch wo

OpenMMLab 3.9k Jan 04, 2023
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022