A library for bridging Python and HTML/Javascript (via Svelte) for creating interactive visualizations

Overview

PySvelte

THIS LIBRARY IS TOTALLY UNSUPPORTED. IT IS PROVIDED AS IS, AS AN EXAMPLE OF ONE WAY TO SOLVE A PROBLEM. MANY FEATURES WILL NOT WORK WITHOUT YOU WRITING YOUR OWN config.py FILE.

If we want to understand neural networks, it's essential that we have effective ways of getting lots of information from the innards of those models into a readable form. Often, this will be a data visualization.

Unfortunately, there's an awkward mismatch between workflows for deep learning research and data visualization. The vast majority of deep learning research is done in Python, where sophisticated libraries make it easy to express neural networks and train them in distributed setups with hardware accelerators. Meanwhile, web standards (HTML/Javascript/CSS) provide a rich environment for data visualization. Trying to use Javascript to train models, or Python for data visualization, takes on a very significant handicap. One wants to use the best tools for each task. But simultaneously working in two ecosystems can also be very challenging.

This library is an attempt at bridging these ecosystems. It encourages a very opinionated workflow of how to integrate visualization into the deep learning research workflow. Our design goals include:

  • To make it easy to create bespoke, custom visualizations based on web standards and Svelte, and use them in Python.
  • To encourage visualizations to be modular and reusable.
  • To make it easy to publish persistent visualizations to standalone, sharable pages.
  • To allow researchers who don't know anything about web technologies to use visualizations their colleagues create.

Set Up

Many features in this library (such as publishing visualiations to GCS/S3/AZ buckets), require you to write several functions specific to your own research setup in config.py.

Basic use

The basic idea is that we create a Svelte component inside the src/ folder, say src/Hello.svelte:

<script>
    export let name;
script>
<h2>Hello {name}!h2>

This visualization automatically becomes available in Python as pysvelte.Hello(). This includes tab completion for argument names.

We can now use it as follows.

import pysvelte
pysvelte.Hello(name="World")

(A few details: (1) This should work without directly running any npm build process; pysvelte will trigger necessary builds for you from Python, in order to make visualizations easily usable by those without web expertise. (2) Argument names are mandatory, since mapping argument names based on order would be very fragile as the svelte component is edited. (3) In addition to objects with clear javascript analogues, NumPy arrays can be passed into components and will be exposed on the javascript side as SciJs NdArrays.)

In a jupyter or colab notebook, the visualization should automatically display if its the last thing computed in a cell. One can also use .show() to show items that aren't the last line:

pysvelte.Hello(name="Alice").show()
pysvelte.Hello(name="Bob").show()

Once you configure config.py you should also be able to use .publish() to publish your visualizations and easily share them. By default, new published visualizations can also be shared on slack to make it easier for your colleagues to discover them, and for convenient sharing when pair programming.

pysvelte.Hello(name="World").publish("~~/hello_world.html")

The objects returned when you use a component are pysvelte.Html() objects, which can be added together. This is useful to create pages.

My Hellos Page

") html += pysvelte.Hello(name="Alice") html += pysvelte.Hello(name="Bob") html.publish("~~/hellos.html")">
html = pysvelte.Html("

My Hellos Page

"
) html += pysvelte.Hello(name="Alice") html += pysvelte.Hello(name="Bob") html.publish("~~/hellos.html")

One final feature we want to highlight is that Svelte components can have companion Python files, like this src/Hello.py. This can be used to add doc strings (which appear in tab completion), argument type signatures, do Python-side validation of data for easier debugging, and even modify data before it is passed to Javascript.

0, "Name can not be empty." assert name[0] == name[0].upper(), "Name must be capitalized."">
def init(name: str):
    """A visualization which says hello to a given name."""
    assert len(name) > 0, "Name can not be empty."
    assert name[0] == name[0].upper(), "Name must be capitalized."

Example component

src/AttentionMulti.svelte contains an example of a component we've developed internally which we use to to visualize attention patterns from Transformer self-attention blocks. You can view a rendered version of (a variant of) this component in our recent paper.

See src/AttentionMulti.py for documentation.

Learn More

On the javascript side, the major things to understand are:

  • Web standards (SVG, Canvas, CSS grid, etc)
  • Svelte
  • ndarray (for JS versions of numpy arrays)

D3 is also helpful!

License

Copyright 2021 Anthropic

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Owner
Anthropic
Anthropic
termplotlib is a Python library for all your terminal plotting needs.

termplotlib termplotlib is a Python library for all your terminal plotting needs. It aims to work like matplotlib. Line plots For line plots, termplot

Nico Schlömer 553 Dec 30, 2022
simple tool to paint axis x and y

simple tool to paint axis x and y

G705 1 Oct 21, 2021
✅ Today I Learn

Today I Learn EDA numpy_100ex numpy_0~10 airline_satisfaction_prediction BERT_naver_movie_classification NLP_prepare NLP_Tweet_Emotion_Recognition tex

Yeonghoo_Ahn 3 Dec 15, 2022
3D-Lorenz-Attractor-simulation-with-python

3D-Lorenz-Attractor-simulation-with-python Animação 3D da trajetória do Atrator de Lorenz, implementada em Python usando o método de Runge-Kutta de 4ª

Hevenicio Silva 17 Dec 08, 2022
Generate a roam research like Network Graph view from your Notion pages.

Notion Graph View Export Notion pages to a Roam Research like graph view.

Steve Sun 214 Jan 07, 2023
The open-source tool for building high-quality datasets and computer vision models

The open-source tool for building high-quality datasets and computer vision models. Website • Docs • Try it Now • Tutorials • Examples • Blog • Commun

Voxel51 2.4k Jan 07, 2023
Define fortify and autoplot functions to allow ggplot2 to handle some popular R packages.

ggfortify This package offers fortify and autoplot functions to allow automatic ggplot2 to visualize statistical result of popular R packages. Check o

Sinhrks 504 Dec 23, 2022
A curated list of awesome Dash (plotly) resources

Awesome Dash A curated list of awesome Dash (plotly) resources Dash is a productive Python framework for building web applications. Written on top of

Luke Singham 1.7k Jan 07, 2023
A Scheil-Gulliver simulation tool using pycalphad.

scheil A Scheil-Gulliver simulation tool using pycalphad. import matplotlib.pyplot as plt from pycalphad import Database, variables as v from scheil i

pycalphad 6 Dec 10, 2021
A Graph Learning library for Humans

A Graph Learning library for Humans These novel algorithms include but are not limited to: A graph construction and graph searching class can be found

Richard Tjörnhammar 1 Feb 08, 2022
HM02: Visualizing Interesting Datasets

HM02: Visualizing Interesting Datasets This is a homework assignment for CSCI 40 class at Claremont McKenna College. Go to the project page to learn m

Qiaoling Chen 11 Oct 26, 2021
Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Statistics and Visualization of acceptance rate, main keyword of CVPR 2021 accepted papers for the main Computer Vision conference (CVPR)

Hoseong Lee 78 Aug 23, 2022
Some method of processing point cloud

Point-Cloud Some method of processing point cloud inversion the completion pointcloud to incomplete point cloud Some model of encoding point cloud to

Tan 1 Nov 19, 2021
Generate the report for OCULTest.

Sample report generated in this function Usage example from utils.gen_report import generate_report if __name__ == '__main__': # def generate_rep

Philip Guo 1 Mar 10, 2022
A python package for animating plots build on matplotlib.

animatplot A python package for making interactive as well as animated plots with matplotlib. Requires Python = 3.5 Matplotlib = 2.2 (because slider

Tyler Makaro 394 Dec 18, 2022
Matplotlib tutorial for beginner

matplotlib is probably the single most used Python package for 2D-graphics. It provides both a very quick way to visualize data from Python and publication-quality figures in many formats. We are goi

Nicolas P. Rougier 2.6k Dec 28, 2022
Make your BSC transaction simple.

bsc_trade_history Make your BSC transaction simple. 中文ReadMe Background: inspired by debank ,Practice my hands on this small project Blog:Crypto-BscTr

foolisheddy 7 Jul 06, 2022
Resources for teaching & learning practical data visualization with python.

Practical Data Visualization with Python Overview All views expressed on this site are my own and do not represent the opinions of any entity with whi

Paul Jeffries 98 Sep 24, 2022
BrowZen correlates your emotional states with the web sites you visit to give you actionable insights about how you spend your time browsing the web.

BrowZen BrowZen correlates your emotional states with the web sites you visit to give you actionable insights about how you spend your time browsing t

Nick Bild 36 Sep 28, 2022
Small project to recursively calculate and plot each successive order of the Hilbert Curve

hilbert-curve Small project to recursively calculate and plot each successive order of the Hilbert Curve. After watching 3Blue1Brown's video on Hilber

Stefan Mejlgaard 2 Nov 15, 2021