Hera is a Python framework for constructing and submitting Argo Workflows.

Overview

Hera (hera-workflows)

The Argo was constructed by the shipwright Argus, and its crew were specially protected by the goddess Hera.

(https://en.wikipedia.org/wiki/Argo)

License: MIT

Hera is a Python framework for constructing and submitting Argo Workflows. The main goal of Hera is to make Argo Workflows more accessible by abstracting away some setup that is typically necessary for constructing Argo workflows.

Python functions are first class citizens in Hera - they are the atomic units (execution payload) that are submitted for remote execution. The framework makes it easy to wrap execution payloads into Argo Workflow tasks, set dependencies, resources, etc.

You can watch the introductory Hera presentation at the "Argo Workflows and Events Community Meeting 20 Oct 2021" here!

Table of content

Assumptions

Hera is exclusively dedicated to remote workflow submission and execution. Therefore, it requires an Argo server to be deployed to a Kubernetes cluster. Currently, Hera assumes that the Argo server sits behind an authentication layer that can authenticate workflow submission requests by using the Bearer token on the request. To learn how to deploy Argo to your own Kubernetes cluster you can follow the Argo Workflows guide!

Another option for workflow submission without the authentication layer is using port forwarding to your Argo server deployment and submitting workflows to localhost:2746 (2746 is the default, but you are free to use yours). Please refer to the documentation of Argo Workflows to see the command for port forward!

In the future some of these assumptions may either increase or decrease depending on the direction of the project. Hera is mostly designed for practical data science purposes, which assumes the presence of a DevOps team to set up an Argo server for workflow submission.

Installation

There are multiple ways to install Hera:

  1. You can install from PyPi:
pip install hera-workflows
  1. Install it directly from this repository using:
python -m pip install git+https://github.com/argoproj-labs/hera-workflows --ignore-installed
  1. Alternatively, you can clone this repository and then run the following to install:
python setup.py install

Contributing

If you plan to submit contributions to Hera you can install Hera in a virtual environment managed by pipenv:

pipenv shell
pipenv sync --dev --pre

Also, see the contributing guide!

Concepts

Currently, Hera is centered around two core concepts. These concepts are also used by Argo, which Hera aims to stay consistent with:

  • Task - the object that holds the Python function for remote execution/the atomic unit of execution;
  • Workflow - the higher level representation of a collection of tasks.

Examples

A very primitive example of submitting a task within a workflow through Hera is:

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    """
    This can be anything as long as the Docker image satisfies the dependencies. You can import anything Python 
    that is in your container e.g torch, tensorflow, scipy, biopython, etc - just provide an image to the task!
    """
    print(message)


ws = WorkflowService('my-argo-domain.com', 'my-argo-server-token')
w = Workflow('my-workflow', ws)
t = Task('say', say, [{'message': 'Hello, world!'}])
w.add_task(t)
w.submit()

Examples

See the examples directory for a collection of Argo workflow construction and submission via Hera!

Comparison

There are other libraries currently available for structuring and submitting Argo Workflows:

  • Couler, which aims to provide a unified interface for constructing and managing workflows on different workflow engines;
  • Argo Python DSL, which allows you to programmaticaly define Argo worfklows using Python.

While the aforementioned libraries provide amazing functionality for Argo workflow construction and submission, they require an advanced understanding of Argo concepts. When Dyno Therapeutics started using Argo Workflows, it was challenging to construct and submit experimental machine learning workflows. Scientists and engineers at Dyno Therapeutics used a lot of time for workflow definition rather than the implementation of the atomic unit of execution - the Python function - that performed, for instance, model training.

Hera presents a much simpler interface for task and workflow construction, empowering users to focus on their own executable payloads rather than workflow setup. Here's a side by side comparison of Hera, Argo Python DSL, and Couler:

Hera Couler Argo Python DSL

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    print(message)


ws = WorkflowService('my-argo-server.com', 'my-auth-token')
w = Workflow('diamond', ws)
a = Task('A', say, [{'message': 'This is task A!'}])
b = Task('B', say, [{'message': 'This is task B!'}])
c = Task('C', say, [{'message': 'This is task C!'}])
d = Task('D', say, [{'message': 'This is task D!'}])

a.next(b).next(d)  # a >> b >> d
a.next(c).next(d)  # a >> c >> d

w.add_tasks(a, b, c, d)
w.submit()

B [lambda: job(name="A"), lambda: job(name="C")], # A -> C [lambda: job(name="B"), lambda: job(name="D")], # B -> D [lambda: job(name="C"), lambda: job(name="D")], # C -> D ] ) diamond() submitter = ArgoSubmitter() couler.run(submitter=submitter) ">
import couler.argo as couler
from couler.argo_submitter import ArgoSubmitter


def job(name):
    couler.run_container(
        image="docker/whalesay:latest",
        command=["cowsay"],
        args=[name],
        step_name=name,
    )


def diamond():
    couler.dag(
        [
            [lambda: job(name="A")],
            [lambda: job(name="A"), lambda: job(name="B")],  # A -> B
            [lambda: job(name="A"), lambda: job(name="C")],  # A -> C
            [lambda: job(name="B"), lambda: job(name="D")],  # B -> D
            [lambda: job(name="C"), lambda: job(name="D")],  # C -> D
        ]
    )


diamond()
submitter = ArgoSubmitter()
couler.run(submitter=submitter)

V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="B") @dependencies(["A"]) def B(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="C") @dependencies(["A"]) def C(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="D") @dependencies(["B", "C"]) def D(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @template @inputs.parameter(name="message") def echo(self, message: V1alpha1Parameter) -> V1Container: container = V1Container( image="alpine:3.7", name="echo", command=["echo", "{{inputs.parameters.message}}"], ) return container ">
from argo.workflows.dsl import Workflow

from argo.workflows.dsl.tasks import *
from argo.workflows.dsl.templates import *


class DagDiamond(Workflow):

    @task
    @parameter(name="message", value="A")
    def A(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="B")
    @dependencies(["A"])
    def B(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="C")
    @dependencies(["A"])
    def C(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="D")
    @dependencies(["B", "C"])
    def D(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @template
    @inputs.parameter(name="message")
    def echo(self, message: V1alpha1Parameter) -> V1Container:
        container = V1Container(
            image="alpine:3.7",
            name="echo",
            command=["echo", "{{inputs.parameters.message}}"],
        )

        return container

Owner
argoproj-labs
argoproj-labs
Pyjiting is a experimental Python-JIT compiler, which is the product of my undergraduate thesis

Pyjiting is a experimental Python-JIT compiler, which is the product of my undergraduate thesis. The goal is to implement a light-weight miniature general-purpose Python JIT compiler.

Lance.Moe 10 Apr 17, 2022
Nimbus - Open Source Cloud Computing Software - 100% Apache2 licensed

⚠️ The Nimbus infrastructure project is no longer under development. ⚠️ For more information, please read the news announcement. If you are interested

Nimbus 194 Jun 30, 2022
Safe temperature monitor for baby's room. Made for Raspberry Pi Pico.

Baby Safe Temperature Monitor This project is meant to build a temperature safety monitor for a baby or small child's room. Studies have shown the ris

Jeff Geerling 72 Oct 09, 2022
The functions we created are included in a script. The necessary parts for pre-processing were taken. Analysis complete.

Feature-Engineering The functions we created are included in a script. The necessary parts for pre-processing were taken. Analysis complete. Business

Ayşe Nur Türkaslan 4 Oct 17, 2021
Twikoo自定义表情列表 | HexoPlusPlus自定义表情列表(其实基于OwO的项目都可以用的啦)

Twikoo-Magic 更新说明 2021/1/15 基于2021/1/14 Twikoo 更新1.1.0-beta,所有表情都将以缩写形式(如:[ text ]:)输出。1/14之前本仓库有部分表情text缺失及重复, 导致无法正常使用表情 1/14后的所有表情json列表已全部更新

noionion 90 Jan 05, 2023
Package to provide translation methods for pyramid, and means to reload translations without stopping the application

Package to provide translation methods for pyramid, and means to reload translations without stopping the application

Grzegorz Śliwiński 4 Nov 20, 2022
Library to emulate the Sneakers movie effect

py-sneakers Port to python of the libnms C library To recreate the famous data decryption effect shown in the 1992 film Sneakers. Install pip install

Nicolas Rebagliati 11 Aug 27, 2021
SysCFG R/W Utility written in Swift

MagicCFG SysCFG R/W Utility written in Swift MagicCFG is one of our first, successful applications that we launched last year. The app makes it possib

Jan Fabel 82 Aug 08, 2022
Introduction to Databases Coursework 2 (SQL) - dataset generator

Introduction to Databases Coursework 2 (SQL) - dataset generator This is python script generates a text file with insert queries for the schema.sql fi

Javier Bosch 1 Nov 08, 2021
🎉 🎉 PyComp - Java Code compiler written in python.

🎉 🎉 PyComp Java Code compiler written in python. This is yet another compiler meant for babcock students project which was created using pure python

Alumona Benaiah 5 Nov 30, 2022
Forward RSS feeds to your email address, community maintained

Getting Started With rss2email We highly recommend that you watch the rss2email project on GitHub so you can keep up to date with the latest version,

248 Dec 28, 2022
Probably the best way to simulate block scopes in Python

This is a package, as it says on the tin, to emulate block scoping in Python, the lack of which being a clever design choice yet sometimes a trouble.

88 Oct 26, 2022
Open source style Deep Dream project

DeepDream ⚠️ If you don't have a gpu with cuda, the style transfer execution time will be much longer Prerequisites Python =3.8.10 How to Install sud

Patrick martins de lima 7 May 17, 2022
Type Persian without confusing words for yourself and others, in Adobe Connect

About In the Adobe Connect chat section, to type in Persian or Arabic, the written words will be confused and will be written and sent illegibly (This

Matin Najafi 23 Nov 26, 2021
Auto-ropper is a tool that aims to automate the exploitation of ROP.

Auto-ropper is a tool that aims to automate the exploitation of ROP. Its goal is to become a tool that no longer requires user interaction.

Zerotistic 16 Nov 13, 2022
Análise do Aplicativo Prévias PSDB 2021

Análise do Aplicativo Prévias PSDB 2021 Com a recente polêmica sobre o aplicativo usado nas Prévias do PSDB de 2021, fiquei curioso para saber como er

Paulo Matias 18 Jul 31, 2022
Developed a website to analyze and generate report of students based on the curriculum that represents student’s academic performance.

Developed a website to analyze and generate report of students based on the curriculum that represents student’s academic performance. We have developed the system such that, it will automatically pa

VIJETA CHAVHAN 3 Nov 08, 2022
Nicotine+: A graphical client for the SoulSeek peer-to-peer system

Nicotine+ Nicotine+ is a graphical client for the Soulseek peer-to-peer file sharing network. Nicotine+ aims to be a pleasant, Free and Open Source (F

940 Jan 03, 2023
A compiler for ARM, X86, MSP430, xtensa and more implemented in pure Python

Introduction The PPCI (Pure Python Compiler Infrastructure) project is a compiler written entirely in the Python programming language. It contains fro

Windel Bouwman 277 Dec 26, 2022
4Geeks Academy Full-Stack Developer program final project.

Final Project Chavi, Clara y Pablo 4Geeks Academy Full-Stack Developer program final project. Authors Javier Manteca - Coding - chavisam Clara Rojano

1 Feb 05, 2022