Hera is a Python framework for constructing and submitting Argo Workflows.

Overview

Hera (hera-workflows)

The Argo was constructed by the shipwright Argus, and its crew were specially protected by the goddess Hera.

(https://en.wikipedia.org/wiki/Argo)

License: MIT

Hera is a Python framework for constructing and submitting Argo Workflows. The main goal of Hera is to make Argo Workflows more accessible by abstracting away some setup that is typically necessary for constructing Argo workflows.

Python functions are first class citizens in Hera - they are the atomic units (execution payload) that are submitted for remote execution. The framework makes it easy to wrap execution payloads into Argo Workflow tasks, set dependencies, resources, etc.

You can watch the introductory Hera presentation at the "Argo Workflows and Events Community Meeting 20 Oct 2021" here!

Table of content

Assumptions

Hera is exclusively dedicated to remote workflow submission and execution. Therefore, it requires an Argo server to be deployed to a Kubernetes cluster. Currently, Hera assumes that the Argo server sits behind an authentication layer that can authenticate workflow submission requests by using the Bearer token on the request. To learn how to deploy Argo to your own Kubernetes cluster you can follow the Argo Workflows guide!

Another option for workflow submission without the authentication layer is using port forwarding to your Argo server deployment and submitting workflows to localhost:2746 (2746 is the default, but you are free to use yours). Please refer to the documentation of Argo Workflows to see the command for port forward!

In the future some of these assumptions may either increase or decrease depending on the direction of the project. Hera is mostly designed for practical data science purposes, which assumes the presence of a DevOps team to set up an Argo server for workflow submission.

Installation

There are multiple ways to install Hera:

  1. You can install from PyPi:
pip install hera-workflows
  1. Install it directly from this repository using:
python -m pip install git+https://github.com/argoproj-labs/hera-workflows --ignore-installed
  1. Alternatively, you can clone this repository and then run the following to install:
python setup.py install

Contributing

If you plan to submit contributions to Hera you can install Hera in a virtual environment managed by pipenv:

pipenv shell
pipenv sync --dev --pre

Also, see the contributing guide!

Concepts

Currently, Hera is centered around two core concepts. These concepts are also used by Argo, which Hera aims to stay consistent with:

  • Task - the object that holds the Python function for remote execution/the atomic unit of execution;
  • Workflow - the higher level representation of a collection of tasks.

Examples

A very primitive example of submitting a task within a workflow through Hera is:

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    """
    This can be anything as long as the Docker image satisfies the dependencies. You can import anything Python 
    that is in your container e.g torch, tensorflow, scipy, biopython, etc - just provide an image to the task!
    """
    print(message)


ws = WorkflowService('my-argo-domain.com', 'my-argo-server-token')
w = Workflow('my-workflow', ws)
t = Task('say', say, [{'message': 'Hello, world!'}])
w.add_task(t)
w.submit()

Examples

See the examples directory for a collection of Argo workflow construction and submission via Hera!

Comparison

There are other libraries currently available for structuring and submitting Argo Workflows:

  • Couler, which aims to provide a unified interface for constructing and managing workflows on different workflow engines;
  • Argo Python DSL, which allows you to programmaticaly define Argo worfklows using Python.

While the aforementioned libraries provide amazing functionality for Argo workflow construction and submission, they require an advanced understanding of Argo concepts. When Dyno Therapeutics started using Argo Workflows, it was challenging to construct and submit experimental machine learning workflows. Scientists and engineers at Dyno Therapeutics used a lot of time for workflow definition rather than the implementation of the atomic unit of execution - the Python function - that performed, for instance, model training.

Hera presents a much simpler interface for task and workflow construction, empowering users to focus on their own executable payloads rather than workflow setup. Here's a side by side comparison of Hera, Argo Python DSL, and Couler:

Hera Couler Argo Python DSL

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    print(message)


ws = WorkflowService('my-argo-server.com', 'my-auth-token')
w = Workflow('diamond', ws)
a = Task('A', say, [{'message': 'This is task A!'}])
b = Task('B', say, [{'message': 'This is task B!'}])
c = Task('C', say, [{'message': 'This is task C!'}])
d = Task('D', say, [{'message': 'This is task D!'}])

a.next(b).next(d)  # a >> b >> d
a.next(c).next(d)  # a >> c >> d

w.add_tasks(a, b, c, d)
w.submit()

B [lambda: job(name="A"), lambda: job(name="C")], # A -> C [lambda: job(name="B"), lambda: job(name="D")], # B -> D [lambda: job(name="C"), lambda: job(name="D")], # C -> D ] ) diamond() submitter = ArgoSubmitter() couler.run(submitter=submitter) ">
import couler.argo as couler
from couler.argo_submitter import ArgoSubmitter


def job(name):
    couler.run_container(
        image="docker/whalesay:latest",
        command=["cowsay"],
        args=[name],
        step_name=name,
    )


def diamond():
    couler.dag(
        [
            [lambda: job(name="A")],
            [lambda: job(name="A"), lambda: job(name="B")],  # A -> B
            [lambda: job(name="A"), lambda: job(name="C")],  # A -> C
            [lambda: job(name="B"), lambda: job(name="D")],  # B -> D
            [lambda: job(name="C"), lambda: job(name="D")],  # C -> D
        ]
    )


diamond()
submitter = ArgoSubmitter()
couler.run(submitter=submitter)

V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="B") @dependencies(["A"]) def B(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="C") @dependencies(["A"]) def C(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="D") @dependencies(["B", "C"]) def D(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @template @inputs.parameter(name="message") def echo(self, message: V1alpha1Parameter) -> V1Container: container = V1Container( image="alpine:3.7", name="echo", command=["echo", "{{inputs.parameters.message}}"], ) return container ">
from argo.workflows.dsl import Workflow

from argo.workflows.dsl.tasks import *
from argo.workflows.dsl.templates import *


class DagDiamond(Workflow):

    @task
    @parameter(name="message", value="A")
    def A(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="B")
    @dependencies(["A"])
    def B(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="C")
    @dependencies(["A"])
    def C(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="D")
    @dependencies(["B", "C"])
    def D(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @template
    @inputs.parameter(name="message")
    def echo(self, message: V1alpha1Parameter) -> V1Container:
        container = V1Container(
            image="alpine:3.7",
            name="echo",
            command=["echo", "{{inputs.parameters.message}}"],
        )

        return container

Owner
argoproj-labs
argoproj-labs
The Python Achievements Framework!

Pychievements: The Python Achievements Framework! Pychievements is a framework for creating and tracking achievements within a Python application. It

Brian 114 Jul 21, 2022
Мой первый калькулятор!!!!!!

my_first_calculator Первый калькулятор созданный мною на питоне Версия калькулятора: 0.0.4 Как скачать? TERMUX Для скрипта нужен питон, скачиваем pkg

Lesha Russkiyov 2 Dec 29, 2021
A powerful and user-friendly binary analysis platform!

angr angr is a platform-agnostic binary analysis framework. It is brought to you by the Computer Security Lab at UC Santa Barbara, SEFCOM at Arizona S

6.3k Jan 02, 2023
Zues Auto Claimer Leaked By bazooka#0001

Zues Auto Claimer Leaked By bazooka#0001 put proxies in prox.txt put ssid in sid.txt put all users you want to target in user.txt for the login just t

1 Jan 15, 2022
Regular Expressions - Use regular expressions to detect date format

A list of all the resources used https://regex101.com/ - To test regex https://w

Ravika Nagpal 1 Jan 04, 2022
Nicotine+: A graphical client for the SoulSeek peer-to-peer system

Nicotine+ Nicotine+ is a graphical client for the Soulseek peer-to-peer file sharing network. Nicotine+ aims to be a pleasant, Free and Open Source (F

940 Jan 03, 2023
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
The most hackable keyboard in all the land

MiRage Modular Keyboard © 2021 Zack Freedman of Voidstar Lab Licensed Creative Commons 4.0 Attribution Noncommercial Share-Alike The MiRage is a 60% o

Zack Freedman 558 Dec 30, 2022
MeerKAT radio telescope simulation package. Built to simulate multibeam antenna data.

MeerKATgen MeerKAT radio telescope simulation package. Designed with performance in mind and utilizes Just in time compile (JIT) and XLA backed vectro

Peter Ma 6 Jan 23, 2022
Is a util for xferring skinning from one mesh to another

maya_pythonplugins skinTo: Is a util for xferring skinning from one mesh to another args: :param maxInfluences: is the number of max influences on the

James Dunlop 2 Jan 24, 2022
Learning a Little about Containerlab

Learning a Little about Containerlab Hello all. This is the respository based on this blog post. Getting Started Feel free to use this example. You wi

10 Oct 16, 2022
This is a working model for which I have used python.

Jarvis_voiceAssistance This is a working model for which I have used python. This model can: 1)Play a video or song on youtube. 2)Tell us time. 3)Tell

Hardik Jain 1 Jan 30, 2022
A browser login credentials thief for windows and Linux

Thief 🦹🏻 A browser login credentials thief for windows and Linux Python script to decrypt login credentials from browsers in windows or linux Decryp

Ash 1 Dec 13, 2021
Back-end API for the reternal framework

RE:TERNAL RE:TERNAL is a centralised purple team simulation platform. Reternal uses agents installed on a simulation network to execute various known

Joey Dreijer 7 Apr 15, 2022
Open-source data observability for modern data teams

Use cases Monitor your data warehouse in minutes: Data anomalies monitoring as dbt tests Data lineage made simple, reliable, and automated dbt operati

889 Jan 01, 2023
Pylexa - Artificial Assistant made with Python

Pylexa - Artificial Assistant made with Python Alexa is a famous artificial assistant used massively across the world. It is a substitute of Alexa whi

\_PROTIK_/ 4 Nov 03, 2021
Project repository of Apache Airflow, deployed on Docker in Amazon EC2 via GitLab.

Airflow on Docker in EC2 + GitLab's CI/CD Personal project for simple data pipeline using Airflow. Airflow will be installed inside Docker container,

Ammar Chalifah 13 Nov 29, 2022
automate some stuff so I can be more noob

dota automate some stuff so I can be more noob This is a simple project, but one that I've wanted forever! I use pyautogui, time, smtplib and datetime

Aaron Allen 17 Oct 18, 2022
🐍 A Python lib for (de)serializing Python objects to/from JSON

Turn Python objects into dicts or (json)strings and back No changes required to your objects Easily customizable and extendable Works with dataclasses

Ramon Hagenaars 253 Dec 14, 2022
a bit of my project :) and I use some of them for my school lesson or study for an exam! but some of them just for myself.

Handy Project a bit of my project :) and I use some of them for my school lesson or study for an exam! but some of them just for myself. the handy pro

amirkasra esmaeilian 13 Jul 05, 2021