Handwritten Text Recognition (HTR) using TensorFlow 2.x

Overview

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR datasets. This Neural Network model recognizes the text contained in the images of segmented texts lines.

Data partitioning (train, validation, test) was performed following the methodology of each dataset. The project implemented the HTRModel abstraction model (inspired by CTCModel) as a way to facilitate the development of HTR systems.

Notes:

  1. All references are commented in the code.
  2. This project doesn't offer post-processing, such as Statistical Language Model.
  3. Check out the presentation in the doc folder.
  4. For more information and demo run step by step, check out the tutorial on Google Colab/Drive.

Datasets supported

a. Bentham

b. IAM

c. Rimes

d. Saint Gall

e. Washington

Requirements

  • Python 3.x
  • OpenCV 4.x
  • editdistance
  • TensorFlow 2.x

Command line arguments

  • --source: dataset/model name (bentham, iam, rimes, saintgall, washington)
  • --arch: network to be used (puigcerver, bluche, flor)
  • --transform: transform dataset to the HDF5 file
  • --cv2: visualize sample from transformed dataset
  • --kaldi_assets: save all assets for use with kaldi
  • --image: predict a single image with the source parameter
  • --train: train model using the source argument
  • --test: evaluate and predict model using the source argument
  • --norm_accentuation: discard accentuation marks in the evaluation
  • --norm_punctuation: discard punctuation marks in the evaluation
  • --epochs: number of epochs
  • --batch_size: number of the size of each batch

Tutorial (Google Colab/Drive)

A Jupyter Notebook is available to demo run, check out the tutorial on Google Colab/Drive.

Sample

Bentham sample with default parameters in the tutorial file.

  1. Preprocessed image (network input)
  2. TE_L: Ground Truth Text (label)
  3. TE_P: Predicted text (network output)

Citation

If this project helped in any way in your research work, feel free to cite the following papers.

HTR-Flor++: A Handwritten Text Recognition System Based on a Pipeline of Optical and Language Models (here)

This work aimed to propose a different pipeline for Handwritten Text Recognition (HTR) systems in post-processing, using two steps to correct the output text. The first step aimed to correct the text at the character level (using N-gram model). The second step had the objective of correcting the text at the word level (using a word frequency dictionary). The experiment was validated in the IAM dataset and compared to the best works proposed within this data scenario.

@inproceedings{10.1145/3395027.3419603,
    author      = {Neto, Arthur F. S. and Bezerra, Byron L. D. and Toselli, Alejandro H. and Lima, Estanislau B.},
    title       = {{HTR-Flor++:} A Handwritten Text Recognition System Based on a Pipeline of Optical and Language Models},
    booktitle   = {Proceedings of the ACM Symposium on Document Engineering 2020},
    year        = {2020},
    publisher   = {Association for Computing Machinery},
    address     = {New York, NY, USA},
    location    = {Virtual Event, CA, USA},
    series      = {DocEng '20},
    isbn        = {9781450380003},
    url         = {https://doi.org/10.1145/3395027.3419603},
    doi         = {10.1145/3395027.3419603},
}

Towards the Natural Language Processing as Spelling Correction for Offline Handwritten Text Recognition Systems (here)

This work aimed a deep study within the research field of Natural Language Processing (NLP), and to bring its approaches to the research field of Handwritten Text Recognition (HTR). Thus, for the experiment and validation, we used 5 datasets (Bentham, IAM, RIMES, Saint Gall and Washington), 3 optical models (Bluche, Puigcerver, Flor), and 8 techniques for text correction in post-processing, including approaches statistics and neural networks, such as encoder-decoder models (seq2seq and Transformers).

@article{10.3390/app10217711,
    author  = {Neto, Arthur F. S. and Bezerra, Byron L. D. and Toselli, Alejandro H.},
    title   = {Towards the Natural Language Processing as Spelling Correction for Offline Handwritten Text Recognition Systems},
    journal = {Applied Sciences},
    pages   = {1-29},
    month   = {10},
    year    = {2020},
    volume  = {10},
    number  = {21},
    url     = {https://doi.org/10.3390/app10217711},
    doi     = {10.3390/app10217711},
}

HDSR-Flor: A Robust End-to-End System to Solve the Handwritten Digit String Recognition Problem in Real Complex Scenarios (here)

This work aimed to propose the optical model for Handwritten Digit String Recognition (HDSR) and compare it with the state-of-the-art models. The International Conference on Frontiers of Handwriting Recognition (ICFHR) 2014 competition on HDSR were used as baselines toevaluate the effectiveness of our proposal, whose metrics, datasets and recognition methods were adopted for fair comparison. Furthermore, we also use a private dataset (Brazilian Bank Check - Courtesy Amount Recognition), and 11 different approaches from the state-of-the-art in HDSR, as well as 2 optical models from the state-of-the-art in Handwritten Text Recognition (HTR).

@article{10.1109/ACCESS.2020.3039003,
    author  = {Neto, Arthur F. S. and Bezerra, Byron L. D. and Lima, Estanislau B. and Toselli, Alejandro H.},
    title   = {{HDSR-Flor:} A Robust End-to-End System to Solve the Handwritten Digit String Recognition Problem in Real Complex Scenarios},
    journal = {IEEE Access},
    pages   = {208543-208553},
    month   = {11},
    year    = {2020},
    volume  = {8},
    isbn    = {2169-3536},
    url     = {https://doi.org/10.1109/ACCESS.2020.3039003},
    doi     = {10.1109/ACCESS.2020.3039003},
}

HTR-Flor: A Deep Learning System for Offline Handwritten Text Recognition (here)

This work aimed to propose the optical model for Handwritten Text Recognition (HTR) and compare it with the state-of-the-art models. The performance comparison was validated in 5 different datasets (Bentham, IAM, RIMES, Saint Gall and Washington). In addition, it was considered one of the best papers in the 33rd SIBGRAPI (2020).

@inproceedings{10.1109/SIBGRAPI51738.2020.00016,
    author      = {Neto, Arthur F. S. and Bezerra, Byron L. D. and Toselli, Alejandro H. and Lima, Estanislau B.},
    title       = {{HTR-Flor:} A Deep Learning System for Offline Handwritten Text Recognition},
    booktitle   = {2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)},
    pages       = {54-61},
    month       = {11},
    year        = {2020},
    location    = {Recife/Porto de Galinhas, PE, Brazil},
    series      = {SIBGRAPI' 33},
    publisher   = {IEEE Computer Society},
    address     = {Los Alamitos, CA, USA},
    url         = {https://doi.org/10.1109/SIBGRAPI51738.2020.00016},
    doi         = {10.1109/SIBGRAPI51738.2020.00016},
}
You might also like...
A Tensorflow model for text recognition (CNN + seq2seq with visual attention) available as a Python package and compatible with Google Cloud ML Engine.
A Tensorflow model for text recognition (CNN + seq2seq with visual attention) available as a Python package and compatible with Google Cloud ML Engine.

Attention-based OCR Visual attention-based OCR model for image recognition with additional tools for creating TFRecords datasets and exporting the tra

A curated list of resources for text detection/recognition (optical character recognition ) with deep learning methods.
A curated list of resources for text detection/recognition (optical character recognition ) with deep learning methods.

awesome-deep-text-detection-recognition A curated list of awesome deep learning based papers on text detection and recognition. Text Detection Papers

Text recognition (optical character recognition) with deep learning methods.
Text recognition (optical character recognition) with deep learning methods.

What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis | paper | training and evaluation data | failure cases and cle

text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network

text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be

Code for the paper STN-OCR: A single Neural Network for Text Detection and Text Recognition

STN-OCR: A single Neural Network for Text Detection and Text Recognition This repository contains the code for the paper: STN-OCR: A single Neural Net

OCR, Scene-Text-Understanding, Text Recognition

Scene-Text-Understanding Survey [2015-PAMI] Text Detection and Recognition in Imagery: A Survey paper [2014-Front.Comput.Sci] Scene Text Detection and

Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.
Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Sign Language Recognition Service This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform s

CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)
CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)

CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu

Comments
  • Bump tensorflow from 2.9.1 to 2.9.3

    Bump tensorflow from 2.9.1 to 2.9.3

    Bumps tensorflow from 2.9.1 to 2.9.3.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.9.3

    Release 2.9.3

    This release introduces several vulnerability fixes:

    TensorFlow 2.9.2

    Release 2.9.2

    This releases introduces several vulnerability fixes:

    ... (truncated)

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.9.3

    This release introduces several vulnerability fixes:

    Release 2.8.4

    This release introduces several vulnerability fixes:

    ... (truncated)

    Commits
    • a5ed5f3 Merge pull request #58584 from tensorflow/vinila21-patch-2
    • 258f9a1 Update py_func.cc
    • cd27cfb Merge pull request #58580 from tensorflow-jenkins/version-numbers-2.9.3-24474
    • 3e75385 Update version numbers to 2.9.3
    • bc72c39 Merge pull request #58482 from tensorflow-jenkins/relnotes-2.9.3-25695
    • 3506c90 Update RELEASE.md
    • 8dcb48e Update RELEASE.md
    • 4f34ec8 Merge pull request #58576 from pak-laura/c2.99f03a9d3bafe902c1e6beb105b2f2417...
    • 6fc67e4 Replace CHECK with returning an InternalError on failing to create python tuple
    • 5dbe90a Merge pull request #58570 from tensorflow/r2.9-7b174a0f2e4
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
  • Bump tensorflow from 2.3.0 to 2.3.1

    Bump tensorflow from 2.3.0 to 2.3.1

    Bumps tensorflow from 2.3.0 to 2.3.1.

    Release notes

    Sourced from tensorflow's releases.

    TensorFlow 2.3.1

    Release 2.3.1

    Bug Fixes and Other Changes

    Changelog

    Sourced from tensorflow's changelog.

    Release 2.3.1

    Bug Fixes and Other Changes

    Release 2.2.1

    ... (truncated)

    Commits
    • fcc4b96 Merge pull request #43446 from tensorflow-jenkins/version-numbers-2.3.1-16251
    • 4cf2230 Update version numbers to 2.3.1
    • eee8224 Merge pull request #43441 from tensorflow-jenkins/relnotes-2.3.1-24672
    • 0d41b1d Update RELEASE.md
    • d99bd63 Insert release notes place-fill
    • d71d3ce Merge pull request #43414 from tensorflow/mihaimaruseac-patch-1-1
    • 9c91596 Fix missing import
    • f9f12f6 Merge pull request #43391 from tensorflow/mihaimaruseac-patch-4
    • 3ed271b Solve leftover from merge conflict
    • 9cf3773 Merge pull request #43358 from tensorflow/mm-patch-r2.3
    • Additional commits viewable in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 0
Releases(v0.0.6)
pyntcloud is a Python library for working with 3D point clouds.

pyntcloud is a Python library for working with 3D point clouds.

David de la Iglesia Castro 1.2k Jan 07, 2023
Line based ATR Engine based on OCRopy

OCR Engine based on OCRopy and Kraken using python3. It is designed to both be easy to use from the command line but also be modular to be integrated

948 Dec 23, 2022
The code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Long-term Action Assessment".

Likert Scoring with Grade Decoupling for Long-term Action Assessment This is the code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Lon

10 Oct 21, 2022
Camelot: PDF Table Extraction for Humans

Camelot: PDF Table Extraction for Humans Camelot is a Python library that makes it easy for anyone to extract tables from PDF files! Note: You can als

Atlan Technologies Pvt Ltd 3.3k Dec 31, 2022
Python tool that takes the OCR.space JSON output as input and draws a text overlay on top of the image.

OCR.space OCR Result Checker = Draw OCR overlay on top of image Python tool that takes the OCR.space JSON output as input, and draws an overlay on to

a9t9 4 Oct 18, 2022
A bot that extract text from images using the Tesseract OCR.

Text from image (OCR) @ocr_text_bot A simple bot to extract text from images. Usage What do I need? A AWS key configured locally, see here. NodeJS. I

Weverton Marques 4 Aug 06, 2021
ocroseg - This is a deep learning model for page layout analysis / segmentation.

ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by

NVIDIA Research Projects 71 Dec 06, 2022
A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database.

A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database. The structure, shape and proportions of the faces are comp

Pavankumar Khot 4 Mar 19, 2022
Scan the MRZ code of a passport and extract the firstname, lastname, passport number, nationality, date of birth, expiration date and personal numer.

PassportScanner Works with 2 and 3 line identity documents. What is this With PassportScanner you can use your camera to scan the MRZ code of a passpo

Edwin Vermeer 441 Dec 24, 2022
This project proposes a camera vision based cursor control system, using hand moment captured from a webcam through a landmarks of hand by using Mideapipe module

This project proposes a camera vision based cursor control system, using hand moment captured from a webcam through a landmarks of hand by using Mideapipe module

Chandru 2 Feb 20, 2022
Machine Leaning applied to denoise images to improve OCR Accuracy

Machine Learning to Denoise Images for Better OCR Accuracy This project is an adaptation of this tutorial and used only for learning purposes: https:/

Antonio Bri Pérez 2 Nov 16, 2022
This is the code for our paper DAAIN: Detection of Anomalous and AdversarialInput using Normalizing Flows

Merantix-Labs: DAAIN This is the code for our paper DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows which can be found at

Merantix 14 Oct 12, 2022
The code of "Mask TextSpotter: An End-to-End Trainable Neural Network for Spotting Text with Arbitrary Shapes"

Mask TextSpotter A Pytorch implementation of Mask TextSpotter along with its extension can be find here Introduction This is the official implementati

Pengyuan Lyu 261 Nov 21, 2022
InverseRenderNet: Learning single image inverse rendering, CVPR 2019.

InverseRenderNet: Learning single image inverse rendering !! Check out our new work InverseRenderNet++ paper and code, which improves the inverse rend

Ye Yu 141 Dec 20, 2022
document image degradation

ocrodeg The ocrodeg package is a small Python library implementing document image degradation for data augmentation for handwriting recognition and OC

NVIDIA Research Projects 134 Nov 18, 2022
Fast style transfer

faststyle Faststyle aims to provide an easy and modular interface to Image to Image problems based on feature loss. Install Making sure you have a wor

Lucas Vazquez 21 Mar 11, 2022
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022
OCR system for Arabic language that converts images of typed text to machine-encoded text.

Arabic OCR OCR system for Arabic language that converts images of typed text to machine-encoded text. The system currently supports only letters (29 l

Hussein Youssef 144 Jan 05, 2023
This repository contains the code for the paper "SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks"

SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks (CVPR 2021 Oral) This repository contains the official PyTorch implementation

Shunsuke Saito 235 Dec 18, 2022
A webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

Qbr Qbr, pronounced as Cuber, is a webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV. 🌈 Accurate color detection 🔍 Accurate 3x3x

Kim 金可明 502 Dec 29, 2022