Identifies the faulty wafer before it can be used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells.

Overview

Retrainable-Faulty-Wafer-Detector

Aim of the project:

In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serves as the substrate for microelectronic devices built in and upon the wafer. The project aims to successfully identify the state of the provided wafer by classifying it between one of the two-class +1 (good, can be used as a substrate) or -1 (bad, the substrate need to be replaced) and then train the model on this data so that it can continuously update itself with the environment and become more generalized with time. In this regard, a training and prediction dataset is provided to build a machine learning classification model, which can predict the wafer quality.

Data Description:

The columns of provided data can be classified into 3 parts: wafer name, sensor values and label. The wafer name contains the batch number of the wafer, whereas the sensor values obtained from the measurement carried out on the wafer. The label column contains two unique values +1 and -1 that identifies if the wafer is good or need to be replaced. Additionally, we also require a schema file, which contains all the relevant information about the training files such as file names, length of date value in the file name, length of time value in the file name, number of columns, name of the columns, and their datatype.

Directory creation:

All the necessary folders were created to effectively separate the files so that the end-user can get easy access to them.

Data Validation:

In this step, we matched our dataset with the provided schema file to match the file names, the number of columns it should contain, their names as well as their datatype. If the files matched with the schema values then they are considered good files on which we can train or predict our model, however, if it didn't match then they are moved to the bad folder. Moreover, we also identify the columns with null values. If all the data in a column is missing then the file is also moved to the bad folder. On the contrary, if only a fraction of data in a column is missing then we initially fill it with NaN and considered it as good data.

Data Insertion in Database:

First, open a connection to the database if it exists otherwise create a new one. A table with the name train_good_raw_dt or pred_good_raw_dt is created in the database, based on the training or prediction process, for inserting the good data files obtained from the data validation step. If the table is already present then new files are inserted in that table as we want training to be done on new as well as old training files. In the end, the data in a stored database is exported as a CSV file, to be used for the model training.

Data Pre-processing and Model Training:

In the training section, first, the data is checked for the NaN values in the columns. If present, impute the NaN values using the KNN imputer. The columns with zero standard deviation were also identified and removed as they don't give any information during model training. A prediction schema was created based on the remained dataset columns. Afterwards, the KMeans algorithm is used to create clusters in the pre-processed data. The optimum number of clusters is selected by plotting the elbow plot, and for the dynamic selection of the number of clusters, we are using the "KneeLocator" function. The idea behind clustering is to implement different algorithms to train data in different clusters. The Kmeans model is trained over pre-processed data and the model is saved for further use in prediction. After clusters are created, we find the best model for each cluster. We are using four algorithms, Random Forest, K-Neighbours, Logistic Regression and XGBoost. For each cluster, both the algorithms are passed with the best parameters derived from GridSearch. We calculate the AUC scores for all the models and select the one with the best score. Similarly, the best model is selected for each cluster. For every cluster, the models are saved so that they can be used in future predictions. In the end, the confusion matrix of the model associated with every cluster is also saved to give the a glance over the performance of the models.

Prediction:

In data prediction, first, the essential directories are created. The data validation, data insertion and data processing steps are similar to the training section. The KMeans model created during training is loaded, and clusters for the pre-processed prediction data is predicted. Based on the cluster number, the respective model is loaded and is used to predict the data for that cluster. Once the prediction is made for all the clusters, the predictions along with the Wafer names are saved in a CSV file at a given location.

Retraining:

After the prediction, the prediction data is merged with the previous training dataset and then the models were retrained on this data using the hyperparameter values obtained from the GridSearch. The cycle repeats with every prediction it does and learns from the newly acquired data, making it more robust.

Deployment:

We will be deploying the model to Heroku Cloud.

Owner
Arun Singh Babal
Engineer | Data Science Enthusiasts | Machine Learning | Deep Learning | Advanced Computer Vision.
Arun Singh Babal
Multitrack exporter for OP-Z

Underbridge for OP-Z Multitrack exporter Description Exports patterns and projects individual audio tracks to seperate folders for use in your DAW. Py

Thomas Herrmann 71 Dec 25, 2022
Refer'd Resume Scanner

Refer'd Resume Scanner I wanted to share a free resource we built to assist applicants with resume building. Our resume scanner identifies potential s

Refer'd 74 Mar 07, 2022
Python pyside2 kütüphanesi ile oluşturduğum drone için yer kontrol istasyonu yazılımı.

Ground Control Station (Yer Kontrol İstasyonu) Teknofest yarışmasında yerlilik kısmında Yer Kontrol İstasyonu yazılımı seçeneği bulunuyordu. Bu yüzden

Emirhan Bülbül 4 May 14, 2022
The third home of the bare Programming Language (1st there's my heart, the forest came second and then there's Github :)

The third home of the bare Programming Language (1st there's my heart, the forest came second and then there's Github :)

Garren Souza 7 Dec 24, 2022
Step by step development of a vending coffee machine project, including tkinter, sqlite3, simulation, etc.

Step by step development of a vending coffee machine project, including tkinter, sqlite3, simulation, etc.

Nikolaos Avouris 2 Dec 05, 2021
Calculator in command line using python programming language

Calculator in command line using python programming language University of the People Python fundamental Chapter 5 Conditionals and recursion The main

mark sikaundi 3 Dec 09, 2021
Proyecto desarrollado para el programa #FutureDevelopers, tabla periódica interactiva.

Tabla_Periodica Proyecto desarrollado para el programa #FutureDevelopers, tabla periódica interactiva. Descripcion primer entregable: Tabla periodica

1 Dec 04, 2021
GA SEI Unit 4 project backend for Bloom.

Grow Your OpportunitiesTM Background Watch the Bloom Intro Video At Bloom, we believe every job seeker deserves an opportunity to find meaningful work

Jonathan Herman 3 Sep 20, 2021
pspsps(1) is a compyuter software to call an online catgirl to the Linux terminyal.

pspsps(1): call a catgirl from the Internyet to the Linux terminyal show processes: ps show catgirls: pspsps —@ Melissa Boiko 32 Dec 19, 2022

Lags valorant servers by rapidly picking up and throwing shorties.

Lags valorant servers by rapidly picking up and throwing shorties.

Eric Still 9 Dec 30, 2021
Problem statements on System Design and Software Architecture as part of Arpit's System Design Masterclass

Problem statements on System Design and Software Architecture as part of Arpit's System Design Masterclass

Relog 1.1k Jan 04, 2023
The blancmange curve can be visually built up out of triangle wave functions if the infinite sum is approximated by finite sums of the first few terms.

Blancmange-curve The blancmange curve can be visually built up out of triangle wave functions if the infinite sum is approximated by finite sums of th

Shankar Mahadevan L 1 Nov 30, 2021
An open source server for Super Mario Bros. 35

SMB35 A custom server for Super Mario Bros. 35 This server is highly experimental. Do not expect it to work without flaws.

Yannik Marchand 162 Dec 07, 2022
Beginner Projects A couple of beginner projects here

Beginner Projects A couple of beginner projects here, listed from easiest to hardest :) selector.py: simply a random selector to tell me who to faceti

Kylie 272 Jan 07, 2023
Mangá downloader (para leitura offline) voltado para sites e scans brasileiros.

yonde! yonde! (読んで!) é um mangá downloader (para leitura offline) voltado para sites e scans brasileiros. Também permite que você converta os capítulo

Yonde 8 Nov 28, 2021
Completed task 1 and task 2 at LetsGrowMore as a data science intern.

LetsGrowMore-Internship Completed task 1 and task 2 at LetsGrowMore as a data science intern. Task 1- Task 2- Creating a Decision Tree classifier and

Sanjyot Panure 1 Jan 16, 2022
Simple AoC helper program you can use to develop your own solutions in python.

AoC-Compabion Simple AoC helper program you can use to develop your own solutions in python. Simply install it in your python environment using pip fr

Alexander Vollmer 1 Dec 20, 2021
A collection of tips for using MISP.

MISP Tip of the Week A collection of tips for using MISP. Published via BelgoMISP (todo) and this repository. Available in MD and JSON. Do you want to

Koen Van Impe 52 Jan 07, 2023
Add your recently blog and douban states in your GitHub Profile

Add your recently blog and douban states in your GitHub Profile

Bingjie Yan 4 Dec 12, 2022
ClamNotif: A tool to send you ClamAV notifications

A tool to forward notifications to different recipients categorised by two severity levels of the regular health reports produced by `clamscan` bundled with the ClamAV antivirus engine.

PiSoft Company Ltd. 1 Nov 15, 2021