This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

Overview

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video]

Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang

CVPR 2021

This is re-implementation of TransGAN: Two Transformers Can Make One Strong GAN, and That Can Scale Up, CVPR 2021 in PyTorch.

Generative Adversarial Networks-GAN builded completely free of Convolutions and used Transformers architectures which became popular since Vision Transformers-ViT. In this implementation, CIFAR-10 dataset was used.

0 Epoch 40 Epoch 100 Epoch 200 Epoch

Related Work - Vision Transformers (ViT)

In this implementation, as a discriminator, Vision Transformer(ViT) Block was used. In order to get more info about ViT, you can look at the original paper here

Credits for illustration of ViT: @lucidrains

Installation

Before running train.py, check whether you have libraries in requirements.txt! Also, create ./fid_stat folder and download the fid_stats_cifar10_train.npz file in this folder. To save your model during training, create ./checkpoint folder using mkdir checkpoint.

Training

python train.py

Pretrained Model

You can find pretrained model here. You can download using:

wget https://drive.google.com/file/d/134GJRMxXFEaZA0dF-aPpDS84YjjeXPdE/view

or

curl gdrive.sh | bash -s https://drive.google.com/file/d/134GJRMxXFEaZA0dF-aPpDS84YjjeXPdE/view

License

MIT

Citation

@article{jiang2021transgan,
  title={TransGAN: Two Transformers Can Make One Strong GAN},
  author={Jiang, Yifan and Chang, Shiyu and Wang, Zhangyang},
  journal={arXiv preprint arXiv:2102.07074},
  year={2021}
}
@article{dosovitskiy2020,
  title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
  author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and  Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
  journal={arXiv preprint arXiv:2010.11929},
  year={2020}
}
@inproceedings{zhao2020diffaugment,
  title={Differentiable Augmentation for Data-Efficient GAN Training},
  author={Zhao, Shengyu and Liu, Zhijian and Lin, Ji and Zhu, Jun-Yan and Han, Song},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2020}
}
Comments
  • GPU memory, Modifying batch size

    GPU memory, Modifying batch size

    Hello,

    I saw your comment in VITA-Group's implementation of TransGAN and started looking at your implementation here.

    Without modifying anything and attempting to run "python train.py" results in CUDA out of memory; I believe the GPU I'm using cannot handle the model size/training images that you've specified. I tried editing the batch size on lines 35 and 36 of train.py (--gener_batch_size, changing default from 64 to 32, etc.), but I get a RuntimeError of:

    Output 0 of UnbindBackward is a view and is being modified inplace. This view is the output of a function that returns multiple views. Such fuctions do not allow the otutput views to be modified inplace. You should replace the inplace operation by an out-of-place one.

    My two questions are:

    1. How would you suggest modifying the training parameters to deal with GPU running out of memory? and,
    2. Is there a better way to edit the batch size, and what else do I need to change in order for the code to not break when the batch size is changed?

    Thanks!

    opened by Andrew-X-Wang 10
  • Create your own FID stats file

    Create your own FID stats file

    Hello and thanks for the implementation. I'm trying to train this model on a different datset, but to do so I need a custom fid_stats file for my dataset. How can I create it ?

    opened by IlyasMoutawwakil 2
  • FID score: nan

    FID score: nan

    Thank you for your contribution. But in the training processing, FID score is Nan. I want to known whether it is appropriate. Should I make some chance to solve this problem?

    opened by Jamie-Cheung 1
  • TransGAN fid problem

    TransGAN fid problem

    hello,I would like to humbly ask you what is the difference beetween TransGAN-main and TransGAN-master?can Trans-main reproduce similar results of the original paper? The results obtained by using CIFAR in TransGAN-main are quite different from those in the paper,and WGAN-EP loss concussion,so I want to ask you.

    opened by Stephenlove 1
  • How do you test on your own dataset with the checkpoint.pth generated?

    How do you test on your own dataset with the checkpoint.pth generated?

    I want to use the checkpoint saved to generate my own results from a testing dataset and use those images later to calculate my own evaluation metrics. Please help

    opened by meh-naz 0
Releases(v2.0)
Owner
Ahmet Sarigun
Yet, another human being!
Ahmet Sarigun
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
CLOOB training (JAX) and inference (JAX and PyTorch)

cloob-training Pretrained models There are two pretrained CLOOB models in this repo at the moment, a 16 epoch and a 32 epoch ViT-B/16 checkpoint train

Katherine Crowson 64 Nov 27, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Awesome Graph Classification - A collection of important graph embedding, classification and representation learning papers with implementations.

A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers

Benedek Rozemberczki 4.5k Jan 01, 2023