Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Overview

Computational Optimal Transport for Machine Learning Reading Group

Over the last few years, optimal transport (OT) has quickly become a central topic in machine learning. OT is now routinely used in many areas of ML, ranging from the theoretical use of OT flow for controlling learning algorithms to the inference of high-dimensional cell trajectories in genomics. This reading group aims to keep participants up to date with the latest research happening in this area.

Logistics

For Winter 2022 term, meetings will be held weekly on Mondays from 14:00 to 15:00 EST via zoom (for now).

  • Zoom Link.

  • Password will be provided on slack before every meeting.

  • Meetings will be recorded by default. Recordings are available to Mila members at this link. Presenters can email [email protected] to opt out from being recorded.

  • Reading Group participates are expected to read each paper beforehand.

Schedule

Date Topic Presenters Slides
01/17/21 Introduction to Optimal Transport for Machine Learning Alex Tong
Ali Harakeh
Part 1
Part 2
01/24/21 Learning with minibatch Wasserstein : asymptotic and gradient properties Kilian Fatras --
01/31/21 -- -- --
02/7/21 -- -- --
02/14/21 -- -- --
02/21/21 -- -- --
02/28/21 -- -- --

Paper Presentation Instructions

Volunteer to Present

  • All participants are encouraged to volunteer to present at the reading group.

  • Volunteers can choose a paper from this list of suggested papers, or any other paper that is related to optimal transport in machine learning.

  • To volunteer, please send the paper title, link, and your preferred presentation date the Slack channel #volunteer-to-present or email [email protected].

Presentation Instructions

  • Presentations should be limited to 40 minutes at most. During the presentation, organizers will act as moderators and will read questions as they come up on the Zoom chat. The aim is to be done in 35-40 min to allow 15 min for general discussion.

  • Presentations should roughly adhere to the following outline:

    1. 5-10 minutes: Problem setup and position to literature.
    2. 10-15 minutes: Contributions/Novel technical points.
    3. 10-15 minutes: Weak points, open questions, and future directions.

Useful References

This is a list of useful references including code, text books, and presentations.

Code

  • POT: Python Optimal Transport: This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning. This library has the most efficient exact OT solvers.
  • GeomLoss: The GeomLoss library provides efficient GPU implementations for Kernel norms, Hausdorff divergences, and Debiased Sinkhorn divergences. This library has the most scalable duel OT solvers embedded within the Sinkhorn divergence computation.

Textbooks

@article{peyre2019computational,
  title={Computational optimal transport: With applications to data science},
  author={Peyr{\'e}, Gabriel and Cuturi, Marco and others},
  journal={Foundations and Trends{\textregistered} in Machine Learning},
  volume={11},
  number={5-6},
  pages={355--607},
  year={2019},
  publisher={Now Publishers, Inc.}}

Workshops and Presentations

Organizers

Modeled after the Causal Representation Learning Reading Group .

Owner
Ali Harakeh
Postdoctoral Research Fellow @mila-iqia
Ali Harakeh
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022