Neural Ensemble Search for Performant and Calibrated Predictions

Related tags

Deep Learningnes
Overview

Neural Ensemble Search

Introduction

This repo contains the code accompanying the paper:

Neural Ensemble Search for Performant and Calibrated Predictions

Authors: Sheheryar Zaidi*, Arber Zela*, Thomas Elsken, Chris Holmes, Frank Hutter and Yee Whye Teh.

The paper introduces two NES algorithms for finding ensembles with varying baselearner architectures with the aim of producing performant and calibrated predictions for both in-distribution data and during distributional shift.

The code, as provided here, makes use of the SLURM job scheduler, however, one should be able to make changes to run the code without SLURM.

News: Oral presentation at the Uncertainty & Robustness in Deep Learning (UDL) Workshop @ ICML 2020

Setting up virtual environment

First, clone and cd to the root of repo:

git clone https://github.com/automl/nes.git
cd nes

We used Python 3.6 and PyTorch 1.3.1 with CUDA 10.0 (see requirements.txt) for running our experiments. For reproducibility, we recommend using these python and CUDA versions. To set up the virtual environment execute the following (python points to Python 3.6):

python -m venv venv

Then, activate the environment using:

source venv/bin/activate

Now install requirements.txt packages by:

pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html

Generating the CIFAR-10-C dataset

To run the experiments on CIFAR-10-C (Hendrycks and Dietterich, ICLR 2019), first generate the shifted data. Begin by downloading the CIFAR-10 dataset by executing the following command:

python -c "import torchvision.datasets as dset; dset.CIFAR10(\"data\", train=True, download=True)"

Next, run the cluster_scripts/generate_corrupted.sh script to generate the shifted data using the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/generate_corrupted.sh

$GPU_CLUSTER_PARTITION is the name of the cluster partition you want to submit the array job to.

To run this without SLURM, use the following command which runs sequentially rather than in parallel:

for i in 0..18; do PYTHONPATH=$PWD python data/generate_corrupted.py $i; done

Running the experiments

The structure for running the two Neural Ensemble Search (NES) algorithms, NES-RS and NES-RE consists of three steps: train the base learners, apply ensemble selection and evaluate the final ensembles. We compared to three deep ensemble baselines: DeepEns (RS), DeepEns (DARTS) and DeepEns(AmoebaNet). The latter two simply require training the baselearners and evaluating the ensemble. For DeepEns (RS), we require an extra intermediate step of picking the "incumbent" architecture (i.e. best architecture by validation loss) from a randomly sampled pool of architectures. For a fair and efficient comparison, we use the same randomly sampled (and trained) pool of architectures used by NES-RS.

Running NES

We describe how to run NES algorithms for CIFAR-10-C using the scripts in cluster_scripts/cifar10/; for Fashion-MNIST, proceed similarly but using the scripts in cluster_scripts/fmnist/. For NES algorithms, we first train the base learners in parallel by the commands:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/nes_rs.sh (NES-RS)

and

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/nes_re.sh (NES-RE)

These scripts will run the NES search for 400 iterations using the same hyperparameters as described in the paper to build the pools of base learners. All baselearners (trained network parameters, predictions across all severity levels, etc.) will be saved in experiments/cifar10/baselearners/ (experiments/fmnist/baselearners/ for Fashion-MNIST).

Next, we perform ensemble selection given the pools built by NES-RS and NES-RE using the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/ensembles_from_pools.sh

We will return to the final step of ensemble evaluation.

Running Deep Ensemble Baselines

To run the deep ensemble baselines DeepEns (AmoebaNet) and DeepEns (DARTS), we first train the base learners in parallel using the scripts:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_amoeba.sh (DeepEns-AmoebaNet)

and

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_darts.sh (DeepEns-DARTS)

These will train the DARTS and AmoebaNet architectures with different random initializations and save the results again in experiments/cifar10/baselearners/.

To run DeepEns-RS, we first have to extract the incumbent architectures from the random sample produced by the NES-RS run above. For that, run:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/get_incumbents_rs.sh

which saves incumbent architecture ids in experiments/cifar10/outputs/deepens_rs/incumbents.txt. Then run the following loop to train multiple random initializations of each of the incumbent architectures:

for arch_id in $(cat < experiments/cifar10/outputs/deepens_rs/incumbents.txt); do sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/deepens_rs.sh $arch_id; done

Evaluating the Ensembles

When all the runs above are complete, all base learners are trained, and we can evaluate all the ensembles (on in-distribution and shifted data). To do that, run the command:

sbatch -p $GPU_CLUSTER_PARTITION cluster_scripts/cifar10/sbatch_scripts/evaluate_ensembles.sh

Plotting the results

Finally, after all the aforementioned steps have been completed, we plot the results by running:

bash cluster_scripts/cifar10/plot_data.sh

This will save the plots in experiments/cifar10/outputs/plots.

Figures from the paper

Results on Fashion-MNIST: Loss fmnist

NES with Regularized Evolution: nes-re

For more details, please refer to the original paper.

Citation

@article{zaidi20,
  author  = {Sheheryar Zaidi and Arber Zela and Thomas Elsken and Chris Holmes and Frank Hutter and Yee Whye Teh},
  title   = {{Neural} {Ensemble} {Search} for {Performant} and {Calibrated} {Predictions}},
  journal = {arXiv:2006.08573 {cs.LG}},
  year    = {2020},
  month   = jun,
}
Owner
AutoML-Freiburg-Hannover
AutoML-Freiburg-Hannover
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

Implémentation en pyhton de l'article Depixelizing pixel art de Johannes Kopf et Dani Lischinski

TableauBits 3 May 29, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022