[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Related tags

Deep LearningRLT-DIMP
Overview

Feel free to visit my homepage

Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper]


Presentation video

1-minute version (ENG)

Video Label

12-minute version (ENG)

Video Label


Summary

Abstract

We propose an improved discriminative model prediction method for robust long-term tracking based on a pre-trained short-term tracker. The baseline pre-trained short-term tracker is SuperDiMP which combines the bounding-box regressor of PrDiMP with the standard DiMP classifier. Our tracker RLT-DiMP improves SuperDiMP in the following three aspects: (1) Uncertainty reduction using random erasing: To make our model robust, we exploit an agreement from multiple images after erasing random small rectangular areas as a certainty. And then, we correct the tracking state of our model accordingly. (2) Random search with spatio-temporal constraints: we propose a robust random search method with a score penalty applied to prevent the problem of sudden detection at a distance. (3) Background augmentation for more discriminative feature learning: We augment various backgrounds that are not included in the search area to train a more robust model in the background clutter. In experiments on the VOT-LT2020 benchmark dataset, the proposed method achieves comparable performance to the state-of-the-art long-term trackers.


Framework


Baseline

  • We adopt the pre-trained short-term tracker which combines the bounding box regressor of PrDiMP with the standard DiMP classifier
  • This tracker's name is SuperDiMP and it can be downloaded on the DiMP-family's github page [link]

Contribution1: Uncertainty reduction using random erasing


Contribution2: Random search with spatio-temporal constraints


Contribution3: Background augmentation for more discriminative learning


Prerequisites

  • Ubuntu 18.04 / Python 3.6 / CUDA 10.0 / gcc 7.5.0
  • Need anaconda
  • Need GPU (more than 2GB, Sometimes it is a little more necessary depending on the situation.)
  • Unfortunately, "Precise RoI Pooling" included in the Dimp tracker only supports GPU (cuda) implementations.
  • Need root permission
  • All libraries in “install.sh” file (please check “how to install”)

How to install

  • Unzip files in $(tracker-path)
  • cd $(tracker-path)
  • bash install.sh $(anaconda-path) $(env-name) (Automatically create conda environment, If you don’t want to make more conda environments, run “bash install_in_conda.sh” after conda activation)
  • check pretrained model "super_dimp.pth.tar" in $(tracker-path)$/pytracking/networks/ (It should be downloaded by install.sh)
  • conda activate $(env-name)
  • make VOTLT2020 workspace (vot workspace votlt2020 --workspace $(workspace-path))
  • move trackers.ini to $(workspace-path)
  • move(or download) votlt2020 dataset to $(workspace-path)/sequences
  • set the VOT dataset directory ($(tracker-path)/pytracking/evaluation/local.py), vot_path should include ‘sequence’ word (e.g., $(vot-dataset-path)/sequences/), vot_path must be the absolute path (not relative path)
  • modify paths in the trackers.ini file, paths should include ‘pytracking’ word (e.g., $(tracker-path)/pytracking), paths must be absolute path (not relative path)
  • cd $(workspace-path)
  • vot evaluate RLT_DiMP --workspace $(workspace-path)
  • It will fail once because the “precise rol pooling” file has to be compiled through the ninja. Please check the handling error parts.
  • vot analysis --workspace $(workspace-path) RLT_DiMP --output json

Handling errors

  • “Process did not finish yet” or “Error during tracker execution: Exception when waiting for response: Unknown”-> re-try or “sudo rm -rf /tmp/torch_extensions/_prroi_pooling/
  • About “groundtruth.txt” -> check vot_path in the $(tracker-path)/pytracking/evaluation/local.py file
  • About “pytracking/evaluation/local.py” -> check and run install.sh
  • About “permission denied : “/tmp/torch_extensions/_prroi_pooling/” -> sudo chmod -R 777 /tmp/torch_extensions/_prroi_pooling/
  • About “No module named 'ltr.external.PreciseRoiPooling’” or “can not complie Precise RoI Pooling library error” -> cd $(tracker-path) -> rm -rf /ltr/external/PreciseRoiPooling -> git clone https://github.com/vacancy/PreciseRoIPooling.git ltr/external/PreciseRoIPooling
  • If nothing happens since the code just stopped -> sudo rm -rf /tmp/torch_extensions/_prroi_pooling/

Contact

If you have any questions, please feel free to contact [email protected]


Acknowledgments

  • The code is based on the PyTorch implementation of the DiMP-family.
  • This work was done while the first author was a visiting researcher at CMU.
  • This work was supported in part through NSF grant IIS-1650994, the financial assistance award 60NANB17D156 from U.S. Department of Commerce, National Institute of Standards and Technology (NIST) and by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior/Interior Business Center (DOI/IBC) contract number D17PC0034. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copy-right annotation/herein. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as representing the official policies or endorsements, either expressed or implied, of NIST, IARPA, NSF, DOI/IBC, or the U.S. Government.

Citation

@InProceedings{Choi2020,
  author = {Choi, Seokeon and Lee, Junhyun and Lee, Yunsung and Hauptmann, Alexander},
  title = {Robust Long-Term Object Tracking via Improved Discriminative Model Prediction},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={0--0},
  year={2020}
}

Reference

  • [PrDiMP] Danelljan, Martin, Luc Van Gool, and Radu Timofte. "Probabilistic Regression for Visual Tracking." arXiv preprint arXiv:2003.12565 (2020).
  • [DiMP] Bhat, Goutam, et al. "Learning discriminative model prediction for tracking." Proceedings of the IEEE International Conference on Computer Vision. 2019.
  • [ATOM] Danelljan, Martin, et al. "Atom: Accurate tracking by overlap maximization." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019.
Owner
Seokeon Choi
I plan to receive a Ph.D. in Aug. 2021. I'm currently looking for a full-time job, residency program, or post-doc. linkedin.com/in/seokeon
Seokeon Choi
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
A Player for Kanye West's Stem Player. Sort of an emulator.

Stem Player Player Stem Player Player Usage Download the latest release here Optional: install ffmpeg, instructions here NOTE: DOES NOT ENABLE DOWNLOA

119 Dec 28, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022