This library is an ongoing effort towards bringing the data exchanging ability between Java/Scala and Python

Overview

PyJava

This library is an ongoing effort towards bringing the data exchanging ability between Java/Scala and Python. PyJava introduces Apache Arrow as the exchanging data format, this means we can avoid ser/der between Java/Scala and Python which can really speed up the communication efficiency than traditional way.

When you invoke python code in Java/Scala side, PyJava will start some python workers automatically and send the data to python worker, and once they are processed, send them back. The python workers are reused
by default.

The initial code in this lib is from Apache Spark.

Install

Setup python(>= 3.6) Env(Conda is recommended):

pip uninstall pyjava && pip install pyjava

Setup Java env(Maven is recommended):

For Scala 2.11/Spark 2.4.3

<dependency>
    <groupId>tech.mlsqlgroupId>
    <artifactId>pyjava-2.4_2.11artifactId>
    <version>0.3.2version>
dependency>

For Scala 2.12/Spark 3.1.1

<dependency>
    <groupId>tech.mlsqlgroupId>
    <artifactId>pyjava-3.0_2.12artifactId>
    <version>0.3.2version>
dependency>

Build Mannually

Install Build Tool:

pip install mlsql_plugin_tool

Build for Spark 3.1.1:

mlsql_plugin_tool spark311
mvn clean install -DskipTests -Pdisable-java8-doclint -Prelease-sign-artifacts

Build For Spark 2.4.3

mlsql_plugin_tool spark243
mvn clean install -DskipTests -Pdisable-java8-doclint -Prelease-sign-artifacts

Using python code snippet to process data in Java/Scala

With pyjava, you can run any python code in your Java/Scala application.

sourceEnconder.toRow(irow).copy() }.iterator // run the code and get the return result val javaConext = new JavaContext val commonTaskContext = new AppContextImpl(javaConext, batch) val columnarBatchIter = batch.compute(Iterator(newIter), TaskContext.getPartitionId(), commonTaskContext) //f.copy(), copy function is required columnarBatchIter.flatMap { batch => batch.rowIterator.asScala }.foreach(f => println(f.copy())) javaConext.markComplete javaConext.close ">
val envs = new util.HashMap[String, String]()
// prepare python environment
envs.put(str(PythonConf.PYTHON_ENV), "source activate dev && export ARROW_PRE_0_15_IPC_FORMAT=1 ")

// describe the data which will be transfered to python 
val sourceSchema = StructType(Seq(StructField("value", StringType)))

val batch = new ArrowPythonRunner(
  Seq(ChainedPythonFunctions(Seq(PythonFunction(
    """
      |import pandas as pd
      |import numpy as np
      |
      |def process():
      |    for item in context.fetch_once_as_rows():
      |        item["value1"] = item["value"] + "_suffix"
      |        yield item
      |
      |context.build_result(process())
    """.stripMargin, envs, "python", "3.6")))), sourceSchema,
  "GMT", Map()
)

// prepare data
val sourceEnconder = RowEncoder.apply(sourceSchema).resolveAndBind()
val newIter = Seq(Row.fromSeq(Seq("a1")), Row.fromSeq(Seq("a2"))).map { irow =>
sourceEnconder.toRow(irow).copy()
}.iterator

// run the code and get the return result
val javaConext = new JavaContext
val commonTaskContext = new AppContextImpl(javaConext, batch)
val columnarBatchIter = batch.compute(Iterator(newIter), TaskContext.getPartitionId(), commonTaskContext)

//f.copy(), copy function is required 
columnarBatchIter.flatMap { batch =>
  batch.rowIterator.asScala
}.foreach(f => println(f.copy()))
javaConext.markComplete
javaConext.close

Using python code snippet to process data in Spark

val enconder = RowEncoder.apply(struct).resolveAndBind() val envs = new util.HashMap[String, String]() envs.put(str(PythonConf.PYTHON_ENV), "source activate streamingpro-spark-2.4.x") val batch = new ArrowPythonRunner( Seq(ChainedPythonFunctions(Seq(PythonFunction( """ |import pandas as pd |import numpy as np |for item in data_manager.fetch_once(): | print(item) |df = pd.DataFrame({'AAA': [4, 5, 6, 7],'BBB': [10, 20, 30, 40],'CCC': [100, 50, -30, -50]}) |data_manager.set_output([[df['AAA'],df['BBB']]]) """.stripMargin, envs, "python", "3.6")))), struct, timezoneid, Map() ) val newIter = iter.map { irow => enconder.toRow(irow) } val commonTaskContext = new SparkContextImp(TaskContext.get(), batch) val columnarBatchIter = batch.compute(Iterator(newIter), TaskContext.getPartitionId(), commonTaskContext) columnarBatchIter.flatMap { batch => batch.rowIterator.asScala.map(_.copy) } } val wow = SparkUtils.internalCreateDataFrame(session, abc, StructType(Seq(StructField("AAA", LongType), StructField("BBB", LongType))), false) wow.show() ">
val session = spark
import session.implicits._
val timezoneid = session.sessionState.conf.sessionLocalTimeZone
val df = session.createDataset[String](Seq("a1", "b1")).toDF("value")
val struct = df.schema
val abc = df.rdd.mapPartitions { iter =>
  val enconder = RowEncoder.apply(struct).resolveAndBind()
  val envs = new util.HashMap[String, String]()
  envs.put(str(PythonConf.PYTHON_ENV), "source activate streamingpro-spark-2.4.x")
  val batch = new ArrowPythonRunner(
    Seq(ChainedPythonFunctions(Seq(PythonFunction(
      """
        |import pandas as pd
        |import numpy as np
        |for item in data_manager.fetch_once():
        |    print(item)
        |df = pd.DataFrame({'AAA': [4, 5, 6, 7],'BBB': [10, 20, 30, 40],'CCC': [100, 50, -30, -50]})
        |data_manager.set_output([[df['AAA'],df['BBB']]])
      """.stripMargin, envs, "python", "3.6")))), struct,
    timezoneid, Map()
  )
  val newIter = iter.map { irow =>
    enconder.toRow(irow)
  }
  val commonTaskContext = new SparkContextImp(TaskContext.get(), batch)
  val columnarBatchIter = batch.compute(Iterator(newIter), TaskContext.getPartitionId(), commonTaskContext)
  columnarBatchIter.flatMap { batch =>
    batch.rowIterator.asScala.map(_.copy)
  }
}

val wow = SparkUtils.internalCreateDataFrame(session, abc, StructType(Seq(StructField("AAA", LongType), StructField("BBB", LongType))), false)
wow.show()

Run Python Project

With Pyjava, you can tell the system where is the python project and which is then entrypoint, then you can run this project in Java/Scala.

"/tmp/data", "tempModelLocalPath" -> "/tmp/model" )) output.foreach(println) ">
import tech.mlsql.arrow.python.runner.PythonProjectRunner

val runner = new PythonProjectRunner("./pyjava/examples/pyproject1", Map())
val output = runner.run(Seq("bash", "-c", "source activate dev && python train.py"), Map(
  "tempDataLocalPath" -> "/tmp/data",
  "tempModelLocalPath" -> "/tmp/model"
))
output.foreach(println)

Example In MLSQL

None Interactive Mode:

!python env "PYTHON_ENV=source activate streamingpro-spark-2.4.x";
!python conf "schema=st(field(a,long),field(b,long))";

select 1 as a as table1;

!python on table1 '''

import pandas as pd
import numpy as np
for item in data_manager.fetch_once():
    print(item)
df = pd.DataFrame({'AAA': [4, 5, 6, 8],'BBB': [10, 20, 30, 40],'CCC': [100, 50, -30, -50]})
data_manager.set_output([[df['AAA'],df['BBB']]])

''' named mlsql_temp_table2;

select * from mlsql_temp_table2 as output; 

Interactive Mode:

!python start;

!python env "PYTHON_ENV=source activate streamingpro-spark-2.4.x";
!python env "schema=st(field(a,integer),field(b,integer))";


!python '''
import pandas as pd
import numpy as np
''';

!python  '''
for item in data_manager.fetch_once():
    print(item)
df = pd.DataFrame({'AAA': [4, 5, 6, 8],'BBB': [10, 20, 30, 40],'CCC': [100, 50, -30, -50]})
data_manager.set_output([[df['AAA'],df['BBB']]])
''';
!python close;

Using PyJava as Arrow Server/Client

Java Server side:

enconder.toRow(irow) }.iterator val javaConext = new JavaContext val commonTaskContext = new AppContextImpl(javaConext, null) val Array(_, host, port) = socketRunner.serveToStreamWithArrow(newIter, dataSchema, 10, commonTaskContext) println(s"${host}:${port}") Thread.currentThread().join() ">
val socketRunner = new SparkSocketRunner("wow", NetUtils.getHost, "Asia/Harbin")

val dataSchema = StructType(Seq(StructField("value", StringType)))
val enconder = RowEncoder.apply(dataSchema).resolveAndBind()
val newIter = Seq(Row.fromSeq(Seq("a1")), Row.fromSeq(Seq("a2"))).map { irow =>
  enconder.toRow(irow)
}.iterator
val javaConext = new JavaContext
val commonTaskContext = new AppContextImpl(javaConext, null)

val Array(_, host, port) = socketRunner.serveToStreamWithArrow(newIter, dataSchema, 10, commonTaskContext)
println(s"${host}:${port}")
Thread.currentThread().join()

Python Client side:

import os
import socket

from pyjava.serializers import \
    ArrowStreamPandasSerializer

out_ser = ArrowStreamPandasSerializer(None, True, True)

out_ser = ArrowStreamPandasSerializer("Asia/Harbin", False, None)
HOST = ""
PORT = -1
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
    sock.connect((HOST, PORT))
    buffer_size = int(os.environ.get("SPARK_BUFFER_SIZE", 65536))
    infile = os.fdopen(os.dup(sock.fileno()), "rb", buffer_size)
    outfile = os.fdopen(os.dup(sock.fileno()), "wb", buffer_size)
    kk = out_ser.load_stream(infile)
    for item in kk:
        print(item)

Python Server side:

import os

import pandas as pd

os.environ["ARROW_PRE_0_15_IPC_FORMAT"] = "1"
from pyjava.api.serve import OnceServer

ddata = pd.DataFrame(data=[[1, 2, 3, 4], [2, 3, 4, 5]])

server = OnceServer("127.0.0.1", 11111, "Asia/Harbin")
server.bind()
server.serve([{'id': 9, 'label': 1}])

Java Client side:

println(enconder.fromRow(i.copy()))) javaConext.close ">
import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.types.{LongType, StringType, StructField, StructType}
import org.scalatest.{BeforeAndAfterAll, FunSuite}
import tech.mlsql.arrow.python.iapp.{AppContextImpl, JavaContext}
import tech.mlsql.arrow.python.runner.SparkSocketRunner
import tech.mlsql.common.utils.network.NetUtils

val enconder = RowEncoder.apply(StructType(Seq(StructField("a", LongType),StructField("b", LongType)))).resolveAndBind()
val socketRunner = new SparkSocketRunner("wow", NetUtils.getHost, "Asia/Harbin")
val javaConext = new JavaContext
val commonTaskContext = new AppContextImpl(javaConext, null)
val iter = socketRunner.readFromStreamWithArrow("127.0.0.1", 11111, commonTaskContext)
iter.foreach(i => println(enconder.fromRow(i.copy())))
javaConext.close

How to configure python worker runs in Docker (todo)

Owner
Byzer
Let data speak.
Byzer
A complex language with high level programming and moderate syntax.

zsq a complex language with high level programming and moderate syntax.

an aspirin 6 Jun 25, 2022
Package pyVHR is a comprehensive framework for studying methods of pulse rate estimation relying on remote photoplethysmography (rPPG)

Package pyVHR (short for Python framework for Virtual Heart Rate) is a comprehensive framework for studying methods of pulse rate estimation relying on remote photoplethysmography (rPPG)

PHUSE Lab 261 Jan 03, 2023
Arcpy Tool developed for ArcMap 10.x that checks DVOF points against TDS data and creates an output feature class as well as a check database.

DVOF_check_tool Arcpy Tool developed for ArcMap 10.x that checks DVOF points against TDS data and creates an output feature class as well as a check d

3 Apr 18, 2022
A hackerank problems, solution repository

This is a repository for all hackerank challenges kindly note this is for learning purposes and if you wish to contribute, dont hesitate all submision

Tyler Mwalo Kenneth's 1 Dec 20, 2021
RDFLib is a Python library for working with RDF, a simple yet powerful language for representing information.

RDFLib RDFLib is a pure Python package for working with RDF. RDFLib contains most things you need to work with RDF, including: parsers and serializers

RDFLib 1.8k Jan 02, 2023
Certipy is a Python tool to enumerate and abuse misconfigurations in Active Directory Certificate Services (AD CS).

Certipy Certipy is a Python tool to enumerate and abuse misconfigurations in Active Directory Certificate Services (AD CS). Based on the C# variant Ce

ollypwn 1.3k Jan 01, 2023
OpenTable Reservation Maker For Python

OpenTable-Reservation-Maker The code that corresponds with this blog post on writing a script to make reservations for me on opentable Getting started

JonLuca De Caro 36 Nov 10, 2022
Intelligent Systems Project In Python

Intelligent Systems Project In Python

RLLAB 3 May 16, 2022
A feed generator. Currently supports generating RSS feeds from Google, Bing, and Yahoo news.

A feed generator. Currently supports generating RSS feeds from Google, Bing, and Yahoo news.

Josh Cardenzana 0 Dec 13, 2021
Reference management solution using Python and Notion.

notion-scholar Reference management solution using Python and Notion. The main idea of this app is to allow to furnish a Notion database using a BibTe

Thomas Hirtz 69 Dec 21, 2022
A PG3D API Made with Python

PG3D Python API A Pixel Gun 3D Python API (Public Ver) Features Count: 29 How To Use? import api as pbn Examples pbn.isBanned(192819483) - True pbn.f

Karim 2 Mar 24, 2022
Online HackerRank problem solving challenges

LinkedListHackerRank Online HackerRank problem solving challenges This challenge is part of a tutorial track by MyCodeSchool You are given the pointer

Sefineh Tesfa 1 Nov 21, 2021
A full-featured, hackable tiling window manager written and configured in Python

A full-featured, hackable tiling window manager written and configured in Python Features Simple, small and extensible. It's easy to write your own la

Qtile 3.8k Dec 31, 2022
Data Applications Project

DBMS project- Hotel Franchise Data and application project By TEAM Kurukunda Bhargavi Pamulapati Pallavi Greeshma Amaraneni What is this project about

Greeshma 1 Nov 28, 2021
flake8 plugin which forbids match statements (PEP 634)

flake8-match flake8 plugin which forbids match statements (PEP 634)

Anthony Sottile 25 Nov 01, 2022
Python dictionaries with advanced dot notation access

from box import Box movie_box = Box({ "Robin Hood: Men in Tights": { "imdb stars": 6.7, "length": 104 } }) movie_box.Robin_Hood_Men_in_Tights.imdb_s

Chris Griffith 2.1k Dec 28, 2022
Blender Add-on That Provides Quick Access to Render Controls

Blender Render Buttons Blender Add-on That Provides Quick Access to Render Controls A Blender 3.0 compatablity update of Blender2.8x-RenderButton v0.0

Don Schnitzius 3 Oct 18, 2022
Better Giveaways is a bot that will change the experience of using a giveaway bot forever.

Better-Giveaways Better Giveaways is a bot that will change the experience of using a giveaway bot forever. VoxelBotUtils/Novus, latest PyPi releases

Lightning 2 Jan 12, 2022
All kinds of programs are accepted here, raise a genuine PR, and claim a PR, Make 4 successful PR's and get the Stickers and T-Shirt from hacktoberfest 2021

this repository is excluded from hacktoberfest Hacktoberfest-2021 This repository aims to help code beginners with their first successful pull request

34 Sep 11, 2022
A pomodoro app written in Python

Pomodoro It's a pomodoro app written in Python. You can minimize it while you're working if you want to, it'll pop up on your screen when the timer is

Yiğit 1 Dec 20, 2021