Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

Related tags

Deep Learningxlm-t
Overview

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter.

XLM-T - A Multilingual Language Model Toolkit for Twitter

As explained in the reference paper, we make start from XLM-Roberta base and continue pre-training on a large corpus of Twitter in multiple languages. This masked language model, which we named twitter-xlm-roberta-base in the 🤗 Huggingface hub, can be downloaded from here.

Note: This Twitter-specific pretrained LM was pretrained following a similar strategy to its English-only counterpart, which was introduced as part of the TweetEval framework, and available here.

We also provide task-specific models based on the Adapter technique, fine-tuned for cross-lingual sentiment analysis (See #2):

1 - Code

We include code with various functionalities to complement this release. We provide examples for, among others, feature extraction and adapter-based inference with language models in this notebook. Also with examples for training and evaluating language models on multiple tweet classification tasks, compatible with UMSAB (see #2) and TweetEval datasets.

Perform inference with Huggingface's pipelines

Using Huggingface's pipelines, obtaining predictions is as easy as:

from transformers import pipeline
model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("Huggingface es lo mejor! Awesome library 🤗😎")
[{'label': 'Positive', 'score': 0.9343640804290771}]

Fine-tune xlm-t with adapters

You can fine-tune an adapter built on top of your language model of choice by running the src/adapter_finetuning.py script, for example:

python3 src/adapter_finetuning.py --language spanish --model cardfiffnlp/twitter-xlm-roberta-base --seed 1 --lr 0.0001 --max_epochs 20

Notebooks

For quick prototyping, you can direclty use the Colab notebooks we provide below:

Notebook Description Colab Link
01: Playgroud examples Minimal start examples Open In Colab
02: Extract embeddings Extract embeddings from tweets Open In Colab
03: Sentiment prediction Predict sentiment Open In Colab
04: Fine-tuning Fine-tune a model on custom data Open In Colab

2 - UMSAB, the Unified Multilingual Sentiment Analysis Benchmark

As part of our framework, we also release a unified benchmark for cross-lingual sentiment analysis for eight different languages. All datasets are framed as tweet classification with three labels (positive, negative and neutral). The languages included in the benchmark, as well as the datasets they are based on, are: Arabic (SemEval-2017, Rosenthal et al. 2017), English (SemEval-17, Rosenthal et al. 2017), French (Deft-2017, Benamara et al. 2017), German (SB-10K, Cieliebak et al. 2017), Hindi (SAIL 2015, Patra et al. 2015), Italian (Sentipolc-2016, Barbieri et al. 2016), Portuguese (SentiBR, Brum and Nunes, 2017) and Spanish (Intertass 2017, Díaz Galiano et al. 2018). The format for each dataset follows that of TweetEval with one line per tweet and label per line.

UMSAB Results / Leaderboard

The following results (Macro F1 reported) correspond to XLM-R (Conneau et al. 2020) and XLM-Tw, the same model retrained on Twitter as explained in the reference paper. The two settings are monolingual (trained and tested in the same language) and multilingual (considering all languages for training). Check the reference paper for more details on the setting and the metrics.

FT Mono XLM-R Mono XLM-Tw Mono XLM-R Multi XLM-Tw Multi
Arabic 46.0 63.6 67.7 64.3 66.9
English 50.9 68.2 66.9 68.5 70.6
French 54.8 72.0 68.2 70.5 71.2
German 59.6 73.6 76.1 72.8 77.3
Hindi 37.1 36.6 40.3 53.4 56.4
Italian 54.7 71.5 70.9 68.6 69.1
Portuguese 55.1 67.1 76.0 69.8 75.4
Spanish 50.1 65.9 68.5 66.0 67.9
All lang. 51.0 64.8 66.8 66.8 69.4

If you would like to have your results added to the leaderboard you can either submit a pull request or send an email to any of the paper authors with results and the predictions of your model. Please also submit a reference to a paper describing your approach.

Evaluating your system

For evaluating your system according to Macro-F1, you simply need an individual prediction file for each of the languages. The format of the predictions file should be the same as the output examples in the predictions folder (one output label per line as per the original test file) and the files should be named language.txt (e.g. arabic.txt or all.txt if evaluating all languages at once). The predictions included as an example in this repo correspond to xlm-t trained and evaluated on all languages (All lang.).

Example usage

python src/evaluation_script.py

The script takes as input a set of test labels and the predictions from the "predictions" folder by default, but you can set this to suit your needs as optional arguments.

Optional arguments

Three optional arguments can be modified:

--gold_path: Path to gold datasets. Default: ./data/sentiment

--predictions_path: Path to predictions directory. Default: ./predictions/sentiment

--language: Language to evaluate (arabic, english ... or all). Default: all

Evaluation script sample usage from the terminal with parameters:

python src/evaluation_script.py --gold_path ./data/sentiment --predictions_path ./predictions/sentiment --language arabic

(this script would output the results for the Arabic dataset only)

Reference paper

If you use this repository in your research, please use the following bib entry to cite the reference paper.

@inproceedings{barbieri2021xlmtwitter,
  title={{A Multilingual Language Model Toolkit for Twitter}},
  author={Barbieri, Francesco and Espinosa-Anke, Luis and Camacho-Collados, Jose},
  booktitle={arXiv preprint arXiv:2104.12250},
  year={2021}
}

If using UMSAB, please also cite their corresponding datasets.

License

This repository is released open-source but but restrictions may apply to individual datasets (which are derived from existing data) or Twitter (main data source). We refer users to the original licenses accompanying each dataset and Twitter regulations.

Owner
Cardiff NLP
Cardiff NLP
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

FLAME Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Co

Neelabh Sinha 19 Dec 17, 2022
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022