COIN the currently largest dataset for comprehensive instruction video analysis.

Overview

COIN Dataset

COIN is the currently largest dataset for comprehensive instruction video analysis. It contains 11,827 videos of 180 different tasks (i.e., car polishing, make French fries) related to 12 domains (i.e., vehicle, dish). All videos are collected from YouTube and annotated with an efficient toolbox.

Authors and Contributors

Yansong Tang*, Dajun Ding, Yongming Rao*, Yu Zheng*, Danyang Zhang*, Lili Zhao, Jiwen Lu*, Jie Zhou*, Yongxiang Lian*, Yao Li, Jiali Sun, Chang Liu, Dongge You, Zirun Yang, Jiaojiao Ge, Jiayun Wang*

  • *Tsinghua University
  • Meitu Inc.

Contact: [email protected]

License

You may use the codes and files for research only, including sharing and modifying the material. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Dataset and Annotation

Taxonomy

The COIN is organized in a hierarchical structure, which contains three levels: domain, task and step. The corresponding relationship can be found at taxonomy [link]. We provide the taxonomy file of COIN in csv format. Below, we show a small part of the texonomy stored in taxonomy.xlsx:

domain_target_mapping target_action_mapping
Domains Targets
... ...
Vehicle ChangeCarTire
Vehicle InstallLicensePlateFrame
... ...
Gadgets ReplaceCDDriveWithSSD
Target Id Target Label Action Id Action Label
... ... ... ...
13 ChangeCarTire 259 unscrew the screw
13 ChangeCarTire 260 jack up the car
13 ChangeCarTire 261 remove the tire
13 ChangeCarTire 262 put on the tire
13 ChangeCarTire 263 tighten the screws
... ... ... ...

We store the url of video and their annotation in JSON format, which can be accessed with the link [COIN](Project link page). The json file is similar to that of ActivityNet. Below, we show an example entry from the key field "database":

"LtRSn-ntcLY": {
			"duration": 131.0309,
			"class": "ReplaceCDDriveWithSSD",
			"video_url": "https://www.youtube.com/embed/LtRSn-ntcLY",
			"start": 56.640895694775196,
			"annotation": [
				{
					"id": "212",
					"segment": [
						60.0,
						69.0
					],
					"label": "take out the laptop CD drive"
				},
				{
					"id": "216",
					"segment": [
						71.0,
						82.0
					],
					"label": "insert the hard disk tray into the position of the CD drive"
				}
			],
			"subset": "training",
			"end": 85.714362947023,
			"recipe_type": 131
		}

From the entry, we can easily retrieve the Youtube ID, duration, ROI and procedure information of the video. The field "annotation" comprises of a list of all annotated procedures within the video. The field "class" and sub-field "id" correspond to "task" and "step" of the taxonomy respectively.

File Structure

The annotation information is saved in COIN.json.

Field Name Type Example Description
database string - Key filed of the annotation file.
- string LtRSn-ntcLY Youtube ID of the video.
duration float 56.640895694775196 Duration of the video in seconds.
class string ReplaceCDDriveWithSSD Name of the task in the video.
video_url string https://www.youtube.com/embed/LtRSn-ntcLY Url of the video.
start float 56.640895694775196 Start time of the ROI of the video.
end float 85.714362947023 End time of the ROI of the video.
subset string training or validation Subset of the video.
recipe_type int 131 ID number of the task.
annotation string - Annotation information of the video.
annotation:id int 212 ID number of the procedure.
annotation:label string take out the laptop CD drive Name of the procedure.
annotation:segment list of float (len=2) [60.0,69.0] Start and end time of the procedure.
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for Stankevičiūtė et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

Kamilė Stankevičiūtė 36 Nov 21, 2022
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
A playable implementation of Fully Convolutional Networks with Keras.

keras-fcn A re-implementation of Fully Convolutional Networks with Keras Installation Dependencies keras tensorflow Install with pip $ pip install git

JihongJu 202 Sep 07, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022