NALSM: Neuron-Astrocyte Liquid State Machine

Related tags

Deep LearningNALSM
Overview

NALSM: Neuron-Astrocyte Liquid State Machine

This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that introduces astrocyte-modulated STDP to the Liquid State Machine learning framework for improved accuracy performance and minimal tuning.

The paper has been accepted at NeurIPS 2021, available here.

Citation

Vladimir A. Ivanov and Konstantinos P. Michmizos. "Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity." 35th Conference on Neural Information Processing Systems (NeurIPS 2021).

@inproceedings{ivanov_2021,
author = {Ivanov, Vladimir A. and Michmizos, Konstantinos P.},
title = {Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity},
year = {2021},
pages={1--10},
booktitle = {35th Conference on Neural Information Processing Systems (NeurIPS 2021)}
}

Software Installation

  • Python 3.6.9
  • Tensorflow 2.1 (with CUDA 11.2 using tensorflow.compat.v1)
  • Numpy
  • Multiprocessing

Usage

This code performs the following functions:

  1. Generate the 3D network
  2. Train NALSM
  3. Evaluate trained model accuracy
  4. Evaluate trained model branching factor
  5. Evaluate model kernel quality

Instructions for obtaining/setting up datasets can be accessed here.

Overview of all files can be accessed here.

1. Generate 3D Network

To generate the 3D network, enter the following command:

python generate_spatial_network.py

This will prompt for following inputs:

  • WHICH_DATASET_TO_GENERATE_NETWORK_FOR? [TYPE M FOR MNIST/ N FOR NMNIST] : enter M to make a network with an input layer sized for MNIST/Fashion-MNIST or N for N-MNIST.
  • NETWORK_NUMBER_TO_CREATE? [int] : enter an integer to label the network.
  • SIZE_OF_LIQUID_DIMENSION_1? [int] : enter an integer representing the number of neurons to be in dimension 1 of liquid.
  • SIZE_OF_LIQUID_DIMENSION_2? [int] : enter an integer representing the number of neurons to be in dimension 2 of liquid.
  • SIZE_OF_LIQUID_DIMENSION_3? [int] : enter an integer representing the number of neurons to be in dimension 3 of liquid.

The run file will generate the network and associated log file containing data about the liquid (i.e. connection densities) in sub-directory

/ /networks/ .

2. Train NALSM

2.1 MNIST

To train NALSM model on MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_MNIST.py

This will prompt for the following inputs:

  • GPU? : enter an integer specifying the gpu to use for training.
  • VERSION? [int] : enter an integer to label the training simulation.
  • NET_NUM_VAR? [int] : enter the number of the network created in Section 1.
  • BATCH_SIZE? [int] : specify the number of samples to train at same time (batch), for liquids with 1000 neurons, batch size of 250 will work on a 12gb gpu. For larger liquids(8000), smaller batch sizes of 50 should work.
  • BATCHS_PER_BLOCK? [int] : specify number of batchs to keep in memory for training output layer, we found 2500 samples works well in terms of speed and memory (so for batch size of 250, this should be set to 10 (10 x 250 = 2500), for batch size 50 set this to 50 (50 x 50 = 2500).
  • ASTRO_W_SCALING? [float] : specify the astrocyte weight detailed in equation 7 of paper. We used 0.015 for all 1000 neuron liquids, and 0.0075 for 8000 neuron liquids. Generally accuracy peaks with a value around 0.01 (See Appendix).

This will generate all output in sub-directory

/ /train_data/ver_XX/ where XX is VERSION number.

2.2 N-MNIST

To train NALSM model on N-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_N_MNIST.py

All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST.py.

2.3 Fashion-MNIST

To train NALSM model on Fashion-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_F_MNIST.py

All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST.py.

Instructions for training other benchmarked LSM models can be accessed here.

3. Evaluate Trained Model Accuracy

To get accuracy of a trained model, enter the following command:

python get_test_accuracy.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model

This will find the epoch with maximum validation accuracy and return the test accuracy for that epoch.

4. Evaluate Model Branching Factor

To compute the branching factor of a trained model, enter the following command:

python compute_branching_factor.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model.

The trained model directory must have atleast one .spikes file, which contains millisecond spike data of each neuron for 20 arbitrarily selected input samples in a batch. The run file will generate a .bf file with same name as the .spikes file.

To read the generated .bf file, enter the following command:

python get_branching_factor.py

The run file will prompt for following inputs:

  • VERSION? [int] : enter the version number of the trained model.

The run file will print the average branching factor over the 20 samples.

5. Evaluate Model Kernel Quality

Model liquid kernel quality was calculated from the linear speration (SP) and generalization (AP) metrics for MNIST and N-MNIST datasets. To compute SP and AP metrics, first noisy spike counts must be generated for the AP metric, as follows.

To generate noisy spike counts for NALSM model on MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_MNIST_NOISE.py

The run file requires a W_INI.wdata file (the initialized weights), which should have been generated during model training.

The run file will prompt for the following inputs:

  • GPU? : enter an integer to select the gpu for the training simulation.
  • VERSION? [int] : enter the version number of the trained model.
  • NET_NUM_VAR? [int] : enter the network number of the trained model.
  • BATCH_SIZE? [int] : use the same value used for training the model.
  • BATCHS_PER_BLOCK? [int] : use the same value used for training the model.

The run file will generate all output in sub-directory

/ /train_data/ver_XX/ where XX is VERSION number.

To generate noisy spike counts for NALSM model on N-MNIST, enter the following command:

python NALSM_RUN_MAIN_SIM_N_MNIST_NOISE.py

As above, the run file requires 'W_INI.wdata' file. All input prompts and output are the same as described above for run file NALSM_RUN_MAIN_SIM_MNIST_NOISE.py.

After generating the noisy spike counts, to compute the SP and AP metrics for each trained model enter the following command:

python compute_SP_AP_kernel_quality_measures.py

The run file will prompt for inputs:

  • VERSION? [int] : enter the version number of the trained model.
  • DATASET_MODEL_WAS_TRAINED_ON? [TYPE M FOR MNIST/ N FOR NMNIST] : enter dataset the model was trained on. The run file will print out the SP and AP metrics.

Instructions for evaluating kernel quality for other benchmarked LSM models can be accessed here.

Owner
Computational Brain Lab
Computational Brain Lab @ Rutgers University
Computational Brain Lab
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David BrΓΌggemann 35 Dec 05, 2022
A Gura parser implementation for Python

Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst

Gura Config Lang 19 Jan 25, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
ML From Scratch

ML from Scratch MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Clustering K Nearest Neighbours Decision

Tanishq Gautam 66 Nov 02, 2022
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video πŸ”₯ | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

RichardΒ Wang 443 Dec 06, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text DetectionοΌ› Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages

NaijaSenti is an open-source sentiment and emotion corpora for four major Nigerian languages. This project was supported by lacuna-fund initiatives. Jump straight to one of the sections below, or jus

Hausa Natural Language Processing 14 Dec 20, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022