Deep Learning to Create StepMania SM FIles

Overview

StepCOVNet

header_example

Codacy Badge

Running Audio to SM File Generator

Currently only produces .txt files. Use SMDataTools to convert .txt to .sm

python stepmania_note_generator.py -i --input <string> -o --output <string> --model <string> -v --verbose <int>
  • -i --input input directory path to audio files
  • -o --output output directory path to .txt files
  • -m --model input directory path to StepCOVNet model````
  • OPTIONAL: -v --verbose 1 shows full verbose, 0 shows no verbose; default is 0

Creating Training Dataset

Link to training data: https://drive.google.com/open?id=1eCRYSf2qnbsSOzC-KmxPWcSbMzi1fLHi

To create a training dataset, you need to parse the .sm files and convert sound files into .wav files:

  • SMDataTools should be used to parse the .sm files into .txt files.
  • wav_converter.py can be used to convert the audio files into .wav files. The default sample rate is 16000hz.

Once the parsed .txt files and .wav files are generated, place the .wav files into separate directories and run training_data_collection.py.

python training_data_collection.py -w --wav <string> -t --timing <string> -o --output <string> --multi <int> --limit <int> --cores <int> --name <string> --distributed <int>
  • -w --wav input directory path to .wav files
  • -t --timing input directory path to timing files
  • -o --output output directory path to output dataset
  • OPTIONAL: --multi 1 collects STFTs using frame_size of [2048, 1024, 4096], 0 collects STFTs using frame_size of [2048]; default is 0
  • OPTIONAL: --limit > 0 stops data collection at limit, -1 means unlimited; default is -1
  • OPTIONAL: --cores > 0 sets the number of cores to use when collecting data; -1 means uses the number of physical cores; default is 1
  • OPTIONAL: --name name to give the dataset; default names dataset based on the configuration parameters
  • OPTIONAL: --distributed 0 creates a single dataset, 1 creates a distributed dataset; default is 0

Training Model

Once training dataset has been created, run train.py.

python train.py -i --input <string> -o --output <string> -d --difficulty <int> --lookback <int> --limit <int> --name <string> --log <string>
  • -i --input input directory path to training dataset
  • -o --output output directory path to save model
  • OPTIONAL: -d --difficulty [0, 1, 2, 3, 4] sets the song difficulty to use when training to ["challenge", "hard", "medium", "easy", "beginner"], respectively; default is 0 or "challenge"
  • OPTIONAL: --lookback > 2 uses timeseries based on lookback when modeling; default is 3
  • OPTIONAL: --limit > 0 limits the amount of training samples used during training, -1 uses all the samples; default is -1
  • OPTIONAL: --name name to give the finished model; default names model based on dat aset used
  • OPTIONAL: --log output directory path to store tensorboard data

TODO

  • End-to-end unit tests for all modules

Credits

Owner
Chimezie Iwuanyanwu
Software Engineer
Chimezie Iwuanyanwu
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaƫl Fonder 76 Jan 03, 2023
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Imanol Schlag 18 Oct 12, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022