Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Overview

Graph Convolutional Networks for Hyperspectral Image Classification

Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot

The code in this toolbox implements the "Graph Convolutional Networks for Hyperspectral Image Classification". More specifically, it is detailed as follow.

alt text

Citation

Please kindly cite the papers if this code is useful and helpful for your research.

D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, J. Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE Trans. Geosci. Remote Sens., 2021, 59(7): 5966-5978.

 @article{hong2021graph,
  title     = {Graph Convolutional Networks for Hyperspectral Image Classification},
  author    = {D. Hong and L. Gao and J. Yao and B. Zhang and A. Plaza and J. Chanussot},
  journal   = {IEEE Trans. Geosci. Remote Sens.}, 
  volume    = {59},
  number    = {7},
  pages     = {5966--5978},
  year      = {2021},
  publisher = {IEEE}
 }

System-specific notes

The data were generated by Matlab R2016a or higher versions, and the codes of various networks were tested in Tensorflow 1.14 version (a little bit different from 2.0 version in some functions) in Python 3.7 on Windows 10 machines.

How to use it?

Here an example experiment is given by using Indian Pine data. Directly run .py functions with different networks to reproduce the results on the Indian Pine data, which exists in the aforementioned paper. Please note that we fixed the randomness of the parameter initialization to reproduce the unchanged results.

This toolbox consists of eight hyperspectral classification networks as follows

1DCNN: one-dimensional convolutional neural network
2DCNN: two-dimensional convolutional neural network
3DCNN:three-dimensional convolutional neural network, which can be found from the paper (Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks, Chen et al., TGRS 2016)
GCN: graph convolutional network
miniGCN: mini-batch GCN
FuNet-A: fusion networks with additive fusion
FuNet-M: fusion networks with element-wise multiplicative fusion
FuNet-C: fusion networks with concatenation fusion

If you want to run the code in your own data, you have to

first of all, use the matlab functions in the folder of DataGenerate_Funciton to prepare the network input data;
next, change the save route or directly copy the generated data into the folder of HSI_CNN or HSI_GCN;
finally, run the .py networks.

Moreover, we provide the fucntion of draw_ClassificaitonMap.m to draw the classification maps with the given colormap function, i.e., giveColorCM_HH.m.

If you encounter the bugs while using this code, please do not hesitate to contact us.

The variable in X_test.mat was converted to single-precision for efficient use of memory, which may cause slight admissible perturbation on actual results. Due to its large size, you may need to manually download X_test.mat to your local in the folder under path IEEE_TGRS_GCN/HSI_CNN/ by the given the links of google drive or baiduyun as follows

Google drive: https://drive.google.com/file/d/1JonHPynVZWCQ9EvZA-oXiFEPU-giIaYt/view?usp=sharing

Baiduyun: https://pan.baidu.com/s/1XRcKsckcYTqnD_zjOvWHoQ (access code: mrdf)

We also provide the fixed training and testing images for Pavia University.

Licensing

Copyright (C) 2020 Danfeng Hong

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.

Contact Information:

Danfeng Hong: [email protected]
Danfeng Hong is with the Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France.

If emergency, you can also add my QQ: 345088114.

Owner
Danfeng Hong
Research Scientist, DLR, Germany / Adjunct Scientist, GiPSA-Lab, French / Machine and Deep Learning in Earth Vision
Danfeng Hong
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
pytorch bert intent classification and slot filling

pytorch_bert_intent_classification_and_slot_filling 基于pytorch的中文意图识别和槽位填充 说明 基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依

西西嘛呦 33 Dec 15, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
Official implementation for the paper: Permutation Invariant Graph Generation via Score-Based Generative Modeling

Permutation Invariant Graph Generation via Score-Based Generative Modeling This repo contains the official implementation for the paper Permutation In

64 Dec 29, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Alex Rogozhnikov 6.2k Jan 01, 2023