Code for Understanding Pooling in Graph Neural Networks

Related tags

Deep LearningSRC
Overview

Select, Reduce, Connect

This repository contains the code used for the experiments of:

"Understanding Pooling in Graph Neural Networks"

Setup

Install TensorFlow and other dependencies:

pip install -r requirements.txt

Running experiments

Experiments are found in the following folders:

  • autoencoder/
  • spectral_similarity/
  • graph_classification/

Each folder has a bash script called run_all.sh that will reproduce the results reported in the paper.

To generate the plots and tables that we included in the paper, you can use the plots.py, plots_datasets.py, or tables.py found in the folders.

To run experiments for an individual pooling operator, you can use the run_[OPERATOR NAME].py scripts in each folder.

The pooling operators that we used for the experiments are found in layers/ (trainable) and modules/ (non-trainable). The GNN architectures used in the experiments are found in models/.

The SRCPool class

The core of this repository is the SRCPool class that implements a general interface to create SRC pooling layers with the Keras API.

Our implementation of MinCutPool, DiffPool, LaPool, Top-K, and SAGPool using the SRCPool class can be found in src/layers.

In general, SRC layers compute:

Where is a node equivariant selection function that computes the supernode assignments , is a permutation-invariant function to reduce the supernodes into the new node attributes, and is a permutation-invariant connection function that computes the links between the pooled nodes.

By extending this class, it is possible to create any pooling layer in the SRC framework.

Input

  • X: Tensor of shape ([batch], N, F) representing node features;
  • A: Tensor or SparseTensor of shape ([batch], N, N) representing the adjacency matrix;
  • I: (optional) Tensor of integers with shape (N, ) representing the batch index;

Output

  • X_pool: Tensor of shape ([batch], K, F), representing the node features of the output. K is the number of output nodes and depends on the specific pooling strategy;
  • A_pool: Tensor or SparseTensor of shape ([batch], K, K) representing the adjacency matrix of the output;
  • I_pool: (only if I was given as input) Tensor of integers with shape (K, ) representing the batch index of the output;
  • S_pool: (if return_sel=True) Tensor or SparseTensor representing the supernode assignments;

API

  • pool(X, A, I, **kwargs): pools the graph and returns the reduced node features and adjacency matrix. If the batch index I is not None, a reduced version of I will be returned as well. Any given kwargs will be passed as keyword arguments to select(), reduce() and connect() if any matching key is found. The mandatory arguments of pool() (X, A, and I) must be computed in call() by calling self.get_inputs(inputs).
  • select(X, A, I, **kwargs): computes supernode assignments mapping the nodes of the input graph to the nodes of the output.
  • reduce(X, S, **kwargs): reduces the supernodes to form the nodes of the pooled graph.
  • connect(A, S, **kwargs): connects the reduced supernodes.
  • reduce_index(I, S, **kwargs): helper function to reduce the batch index (only called if I is given as input).

When overriding any function of the API, it is possible to access the true number of nodes of the input (N) as a Tensor in the instance variable self.N (this is populated by self.get_inputs() at the beginning of call()).

Arguments:

  • return_sel: if True, the Tensor used to represent supernode assignments will be returned with X_pool, A_pool, and I_pool;
Owner
Daniele Grattarola
PhD student @ Università della Svizzera italiana
Daniele Grattarola
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
xitorch: differentiable scientific computing library

xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely used in scientific computing applications as well as deep learning.

24 Apr 15, 2021
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
🏆 The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval 🏆 The 1st Place Submission to AICity Challenge 2021 Natural

82 Dec 29, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022