Simple encryption-at-rest with key rotation support for Python.

Related tags

Cryptographykeyringpy
Overview

keyring

Simple encryption-at-rest with key rotation support for Python.

keyring: Simple encryption-at-rest with key rotation support for Python.

N.B.: keyring is not for encrypting passwords--for that, you should use something like bcrypt. It's meant for encrypting sensitive data you will need to access in plain text (e.g. storing OAuth token from users). Passwords do not fall in that category.

This package is completely independent from any storage mechanisms; the goal is providing a few functions that could be easily integrated with any ORM.

Installation

Add package to your requirements.txt or:

pip install keyring

Usage

Encryption

By default, AES-128-CBC is the algorithm used for encryption. This algorithm uses 16 bytes keys, but you're required to use a key that's double the size because half of that keys will be used to generate the HMAC. The first 16 bytes will be used as the encryption key, and the last 16 bytes will be used to generate the HMAC.

Using random data base64-encoded is the recommended way. You can easily generate keys by using the following command:

$ dd if=/dev/urandom bs=32 count=1 2>/dev/null | openssl base64 -A
qUjOJFgZsZbTICsN0TMkKqUvSgObYxnkHDsazTqE5tM=

Include the result of this command in the value section of the key description in the keyring. Half this key is used for encryption, and half for the HMAC.

Key size

The key size depends on the algorithm being used. The key size should be double the size as half of it is used for HMAC computation.

  • aes-128-cbc: 16 bytes (encryption) + 16 bytes (HMAC).
  • aes-192-cbc: 24 bytes (encryption) + 24 bytes (HMAC).
  • aes-256-cbc: 32 bytes (encryption) + 32 bytes (HMAC).

About the encrypted message

Initialization vectors (IV) should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; it is important to remember that an attacker must not be able to predict ahead of time what a given IV will be.

With that in mind, keyring uses base64(hmac(unencrypted iv + encrypted message) + unencrypted iv + encrypted message) as the final message. If you're planning to migrate from other encryption mechanisms or read encrypted values from the database without using keyring, make sure you account for this. The HMAC is 32-bytes long and the IV is 16-bytes long.

Keyring

Keys are managed through a keyring--a short python Dictionary describing your encryption keys. The keyring must be a Dictionary object mapping numeric ids of the keys to the key values. A keyring must have at least one key. For example:

{
  "1": "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=",
  "2": "VN8UXRVMNbIh9FWEFVde0q7GUA1SGOie1+FgAKlNYHc="
}

The id is used to track which key encrypted which piece of data; a key with a larger id is assumed to be newer. The value is the actual bytes of the encryption key.

Key Rotation

With keyring you can have multiple encryption keys at once and key rotation is fairly straightforward: if you add a key to the keyring with a higher id than any other key, that key will automatically be used for encryption when objects are either created or updated. Any keys that are no longer in use can be safely removed from the keyring.

It's extremely important that you save the keyring id returned by encrypt(); otherwise, you may not be able to decrypt values (you can always decrypt values if you still possess all encryption keys).

If you're using keyring to encrypt database columns, it's recommended to use a separated keyring for each table you're planning to encrypt: this allows an easier key rotation in case you need (e.g. key leaking).

N.B.: Keys are hardcoded on these examples, but you shouldn't do it on your code base. You can retrieve keyring from environment variables if you're deploying to Heroku and alike, or deploy a JSON file with your configuration management software (e.g. Ansible, Puppet, Chef, etc).

Basic usage of keyring

πŸ”’ Vco48O95YC4jqj44MheY8zFO2NLMPp/KILiUGbKxHvAwLd2/AN+zUG650CJzogttqnF1cGMFb//Idg4+bXoRMQ== #=> πŸ”‘ 1 #=> πŸ”Ž c39ec9729dbacd45cecd5ea9a60b15b50b0cc857 # STEP 2: Decrypted message using encryption key defined by keyring id. decrypted = encryptor.decrypt(encrypted, keyringId) print(f'βœ‰οΈ {decrypted}') #=> βœ‰οΈ super secret">
from keyring import Keyring;

keys = { '1': "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=" }
encryptor = Keyring(keys, { "digest_salt": "salt-n-pepper" })

# STEP 1: Encrypt message using latest encryption key.
encrypted, keyringId, digest = encryptor.encrypt("super secret")
print(f'πŸ”’ {encrypted}')
print(f'πŸ”‘ {keyringId}')
print(f'πŸ”Ž {digest}')
#=> πŸ”’ Vco48O95YC4jqj44MheY8zFO2NLMPp/KILiUGbKxHvAwLd2/AN+zUG650CJzogttqnF1cGMFb//Idg4+bXoRMQ== 
#=> πŸ”‘ 1
#=> πŸ”Ž c39ec9729dbacd45cecd5ea9a60b15b50b0cc857

# STEP 2: Decrypted message using encryption key defined by keyring id.
decrypted = encryptor.decrypt(encrypted, keyringId)
print(f'βœ‰οΈ {decrypted}')
#=> βœ‰οΈ super secret

Change encryption algorithm

You can choose between AES-128-CBC, AES-192-CBC and AES-256-CBC. By default, AES-128-CBC will be used.

To specify the encryption algorithm, set the encryption option. The following example uses AES-256-CBC.

", })">
from keyring import Keyring

keys = { "1": "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=" }
encryptor = Keyring(keys, {
  "encryption": "aes-256-cbc",
  "digest_salt": "
   
    "
   ,
})

Exchange data with Ruby

If you use Ruby, you may be interested in https://github.com/fnando/attr_keyring, which is able to read and write messages using the same format.

Exchange data with Node.js

If you use Node.js, you may be interested in https://github.com/fnando/keyring-node, which is able to read and write messages using the same format.

Development

After checking out the repo, run pip install -r requirements.dev.txt to install dependencies. Then, run pytest to run the tests.

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/dannluciano/keyring-python. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the Contributor Covenant code of conduct.

License

The gem is available as open source under the terms of the MIT License.

Icon

Icon made by Icongeek26 from Flaticon is licensed by Creative Commons BY 3.0.

Code of Conduct

Everyone interacting in the keyring project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the code of conduct.

Acknowledgments

Inspired:

Thanks to IFPI for pay my salary!

IFPI

Owner
Dann Luciano
Dann Luciano
Electrum - Lightweight Vertcoin client

Electrum - Lightweight Vertcoin client Electrum-VTC is a rebase of upstream Electrum and pulls in updates regularly. Donate VTC to support this work:

Vertcoin 4 Oct 14, 2022
Simple encryption/decryption utility using Pycryptodome module. Working with AES and RSA algorithms.

EncypherUtil Simple encryption/decryption utility using PyCryptodome module. Working with AES and RSA algorithms. THIS UTILITY IS NOT LICENSED AS CRYP

Egor Yakubovich 0 Jun 14, 2022
A web app to scan crypto markets based on candlestick pattern recognition from

Crypto_Scanner A web app to scan crypto markets based on candlestick pattern recognition from "Japanese Candlestick Charting Techniques: A Contemporar

Chris Qi 27 Jan 01, 2023
Simple python program to encrypt files with AES-256 encryption

simple-enc Simple python program to encrypt files with AES-256 encryption Setup First install "pyAesCrypt" using pip. Thats it! Optionally you can add

Hashm 2 Jan 19, 2022
Mizogg-Bitcoin-Tools - A Python Tools for Bitcoin Information Balance, HASH160, DEC

Mizogg-Bitcoin-Tools Tools for Bitcoin Information Balance, HASH160, DEC, Englis

48 Jan 02, 2023
A simple, terminal password manager in Python.

A simple, terminal password manager in Python.

81 Nov 22, 2022
Marketplace but with cryptocurrencies only.

MoneroMarket Marketplace but with cryptocurrencies only. MoneroMarket was created as a way to be able to use cryptocurrencies as an actual currency to

Janoher 35 Jan 01, 2023
A Trading strategy for the Freqtrade crypto bot.

Important Thing to notice 1) Do not use this strategy on live. It is still undergoing dry-run. 2) The Hyperopt is highly optimized towards "shitcoin"

160 Dec 26, 2022
bitcoin-ticker is a E-ink ticker that shows usefull information about bitcoin

bitcoin-ticker bitcoin-ticker is a E-ink ticker that shows usefull information about bitcoin. Due to the limited refresh lifetime, new information is

32 Nov 09, 2022
Crypto Stats and Tweets Data Pipeline using Airflow

Crypto Stats and Tweets Data Pipeline using Airflow Introduction Project Overview This project was brought upon through Udacity's nanodegree program.

Matthew Greene 1 Nov 24, 2021
Decrypting winrm traffic using password/ntlm hash

Decrypting winrm traffic using password/ntlm hash

Haoxi Tan 9 Jan 05, 2022
Simple encryption-at-rest with key rotation support for Python.

keyring Simple encryption-at-rest with key rotation support for Python. N.B.: keyring is not for encrypting passwords--for that, you should use someth

Dann Luciano 1 Dec 23, 2021
SysWhispers integrated shellcode loader w/ ETW patching & anti-sandboxing

TymSpecial Shellcode Loader Description This project was made as a way for myself to learn C++ and gain insight into how EDR products work. TymSpecial

Nick Frischkorn 145 Dec 20, 2022
Bridge between L1 (Ethereum) and L2 (cheapETH)

The ETH chain and the cheapETH chain. We can assume the ETH chain has ~1000x more value than the cheapETH chain.

107 Oct 12, 2022
A Docker image for plotting and farming the Chiaβ„’ cryptocurrency on one computer or across many.

An easy-to-use WebUI for crypto plotting and farming. Offers Plotman, MadMax, Chiadog, Bladebit, Farmr, and Forktools in a Docker container. Supports Chia, Cactus, Chives, Flax, Flora, HDDCoin, Maize

Guy Davis 328 Jan 01, 2023
This is an experimental AES-encrypted RPC API for ESP 8266.

URPC This is an experimental AES-encrypted RPC API for ESP 8266. Usage The server folder contains a sample ESP 8266 project. Simply set the values in

Ian Walton 1 Oct 26, 2021
Secure open-source password manager.

aes256_passwd_store This script securely encrypts or decrypts passwords on disk within a custom database file. It also features functionality to retri

14 Nov 15, 2022
Python implementation of EIP 1577 content hash

ContentHash for Python Python implementation of EIP 1577 content hash. Description This is a simple package made for encoding and decoding content has

Filip Ε  11 Jul 19, 2022
Hide secret texts inside an image, optionally encrypt them with a password using AES-256.

Hide secret texts/messages inside an image. You can optionally encrypt your texts with a password using AES-256 before encoding into the image.

Teja Swaroop 97 Dec 29, 2022
A Python library to wrap age and minisign to provide key management, encryption/decryption and signing/verification functionality.

A Python library to wrap age and minisign to provide key management, encryption/decryption and signing/verification functionality.

Vinay Sajip 3 Feb 01, 2022