Simple encryption-at-rest with key rotation support for Python.

Related tags

Cryptographykeyringpy
Overview

keyring

Simple encryption-at-rest with key rotation support for Python.

keyring: Simple encryption-at-rest with key rotation support for Python.

N.B.: keyring is not for encrypting passwords--for that, you should use something like bcrypt. It's meant for encrypting sensitive data you will need to access in plain text (e.g. storing OAuth token from users). Passwords do not fall in that category.

This package is completely independent from any storage mechanisms; the goal is providing a few functions that could be easily integrated with any ORM.

Installation

Add package to your requirements.txt or:

pip install keyring

Usage

Encryption

By default, AES-128-CBC is the algorithm used for encryption. This algorithm uses 16 bytes keys, but you're required to use a key that's double the size because half of that keys will be used to generate the HMAC. The first 16 bytes will be used as the encryption key, and the last 16 bytes will be used to generate the HMAC.

Using random data base64-encoded is the recommended way. You can easily generate keys by using the following command:

$ dd if=/dev/urandom bs=32 count=1 2>/dev/null | openssl base64 -A
qUjOJFgZsZbTICsN0TMkKqUvSgObYxnkHDsazTqE5tM=

Include the result of this command in the value section of the key description in the keyring. Half this key is used for encryption, and half for the HMAC.

Key size

The key size depends on the algorithm being used. The key size should be double the size as half of it is used for HMAC computation.

  • aes-128-cbc: 16 bytes (encryption) + 16 bytes (HMAC).
  • aes-192-cbc: 24 bytes (encryption) + 24 bytes (HMAC).
  • aes-256-cbc: 32 bytes (encryption) + 32 bytes (HMAC).

About the encrypted message

Initialization vectors (IV) should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; it is important to remember that an attacker must not be able to predict ahead of time what a given IV will be.

With that in mind, keyring uses base64(hmac(unencrypted iv + encrypted message) + unencrypted iv + encrypted message) as the final message. If you're planning to migrate from other encryption mechanisms or read encrypted values from the database without using keyring, make sure you account for this. The HMAC is 32-bytes long and the IV is 16-bytes long.

Keyring

Keys are managed through a keyring--a short python Dictionary describing your encryption keys. The keyring must be a Dictionary object mapping numeric ids of the keys to the key values. A keyring must have at least one key. For example:

{
  "1": "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=",
  "2": "VN8UXRVMNbIh9FWEFVde0q7GUA1SGOie1+FgAKlNYHc="
}

The id is used to track which key encrypted which piece of data; a key with a larger id is assumed to be newer. The value is the actual bytes of the encryption key.

Key Rotation

With keyring you can have multiple encryption keys at once and key rotation is fairly straightforward: if you add a key to the keyring with a higher id than any other key, that key will automatically be used for encryption when objects are either created or updated. Any keys that are no longer in use can be safely removed from the keyring.

It's extremely important that you save the keyring id returned by encrypt(); otherwise, you may not be able to decrypt values (you can always decrypt values if you still possess all encryption keys).

If you're using keyring to encrypt database columns, it's recommended to use a separated keyring for each table you're planning to encrypt: this allows an easier key rotation in case you need (e.g. key leaking).

N.B.: Keys are hardcoded on these examples, but you shouldn't do it on your code base. You can retrieve keyring from environment variables if you're deploying to Heroku and alike, or deploy a JSON file with your configuration management software (e.g. Ansible, Puppet, Chef, etc).

Basic usage of keyring

🔒 Vco48O95YC4jqj44MheY8zFO2NLMPp/KILiUGbKxHvAwLd2/AN+zUG650CJzogttqnF1cGMFb//Idg4+bXoRMQ== #=> 🔑 1 #=> 🔎 c39ec9729dbacd45cecd5ea9a60b15b50b0cc857 # STEP 2: Decrypted message using encryption key defined by keyring id. decrypted = encryptor.decrypt(encrypted, keyringId) print(f'✉️ {decrypted}') #=> ✉️ super secret">
from keyring import Keyring;

keys = { '1': "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=" }
encryptor = Keyring(keys, { "digest_salt": "salt-n-pepper" })

# STEP 1: Encrypt message using latest encryption key.
encrypted, keyringId, digest = encryptor.encrypt("super secret")
print(f'🔒 {encrypted}')
print(f'🔑 {keyringId}')
print(f'🔎 {digest}')
#=> 🔒 Vco48O95YC4jqj44MheY8zFO2NLMPp/KILiUGbKxHvAwLd2/AN+zUG650CJzogttqnF1cGMFb//Idg4+bXoRMQ== 
#=> 🔑 1
#=> 🔎 c39ec9729dbacd45cecd5ea9a60b15b50b0cc857

# STEP 2: Decrypted message using encryption key defined by keyring id.
decrypted = encryptor.decrypt(encrypted, keyringId)
print(f'✉️ {decrypted}')
#=> ✉️ super secret

Change encryption algorithm

You can choose between AES-128-CBC, AES-192-CBC and AES-256-CBC. By default, AES-128-CBC will be used.

To specify the encryption algorithm, set the encryption option. The following example uses AES-256-CBC.

", })">
from keyring import Keyring

keys = { "1": "uDiMcWVNTuz//naQ88sOcN+E40CyBRGzGTT7OkoBS6M=" }
encryptor = Keyring(keys, {
  "encryption": "aes-256-cbc",
  "digest_salt": "
   
    "
   ,
})

Exchange data with Ruby

If you use Ruby, you may be interested in https://github.com/fnando/attr_keyring, which is able to read and write messages using the same format.

Exchange data with Node.js

If you use Node.js, you may be interested in https://github.com/fnando/keyring-node, which is able to read and write messages using the same format.

Development

After checking out the repo, run pip install -r requirements.dev.txt to install dependencies. Then, run pytest to run the tests.

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/dannluciano/keyring-python. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the Contributor Covenant code of conduct.

License

The gem is available as open source under the terms of the MIT License.

Icon

Icon made by Icongeek26 from Flaticon is licensed by Creative Commons BY 3.0.

Code of Conduct

Everyone interacting in the keyring project’s codebases, issue trackers, chat rooms and mailing lists is expected to follow the code of conduct.

Acknowledgments

Inspired:

Thanks to IFPI for pay my salary!

IFPI

Owner
Dann Luciano
Dann Luciano
Marketplace but with cryptocurrencies only.

MoneroMarket Marketplace but with cryptocurrencies only. MoneroMarket was created as a way to be able to use cryptocurrencies as an actual currency to

Janoher 35 Jan 01, 2023
Create and finder all address wallet bitcoin and check balance , transaction

BTCCrackWallet Create and finder all address wallet bitcoin and check balance , transaction bitcoin wallet generator generated address wallet , public

MMDRZA 11 Nov 26, 2022
Atomkraft - Lightweight e2e testing for cosmos blockchains

Atomkraft End-to-end testing of Cosmos blockchains should be easy and reproducib

Informal Systems 57 Dec 16, 2022
BOT para o BombCrypto para infinitas contas em simultâneo!!!

BOT - MultiContas para BombCrypto - v 0.4.0 Funções extras: Envios de notificações via Telegram: Aviso de Inicialização do Bot Aviso de Conclusão de M

Rai Zancanaro 19 Dec 20, 2022
Python app for encrypting messages with fernet cryptography.

Fernet Encryption Python app for encrypting messages with fernet cryptography. Github repo: https://github.com/mystic-repo/FernetEncryption PyPi: http

Mystic 1 May 28, 2022
Blockchain with crypto transaction feature

python script that asks users for their name, who they are sending J2 coin too(fictional cryptocurrency) and how much they're sending. it then prints the transaction detail in words and prints the ha

Joshua Stojkovic 2 Jan 10, 2022
This project is a proof of concept to create a dashboard using Dash to display information about various cryptocurrencies.

This project is a WIP as a way to display useful information about cryptocurrencies. It's currently being actively developed as a proof of concept, and a way to visualize more useful data about vario

7 Apr 21, 2022
obj-encrypt is an encryption library based on the AES-256 algorithm.

obj-encrypt is an encryption library based on the AES-256 algorithm. It uses Python objects as the basic unit, which can convert objects into binary ciphertext and support decryption. Objects encrypt

Cyberbolt 2 May 04, 2022
A really, really bad way to encrypt your text

deoxyencryptingnucleicacids A really, really bad way to encrypt your text. A general description of the scheme Encoding: The ascii plaintext is first

Sam Pinkerton 1 Nov 01, 2021
ETHGreen blockchain is a fork from STAI and Chia blockchain including features implemented by Covid blockchain.

Welcome to ETHGreen Blockchain ETHGreen blockchain is a fork from STAI and Chia blockchain including features implemented by Covid blockchain. About t

11 Dec 23, 2022
Use this script to track the gains of cryptocurrencies using historical data and display it on a super-imposed chart in order to find the highest performing cryptocurrencies historically

crypto-performance-tracker Use this script to track the gains of cryptocurrencies using historical data and display it on a super-imposed chart in ord

Andrei 25 Aug 31, 2022
Python Steganography data hiding in image

Python-Steganography Python Steganography data hiding in image data encryption and decryption im here you have to import stepic module 1.open CMD 2.ty

JehanKandy 10 Jul 13, 2022
Python ASN.1 library with a focus on performance and a pythonic API

asn1crypto A fast, pure Python library for parsing and serializing ASN.1 structures. Features Why Another Python ASN.1 Library? Related Crypto Librari

Will Bond 282 Dec 11, 2022
Python FFI bindings for libsecp256k1 (maintained)

secp256k1-py Python FFI bindings for libsecp256k1 (an experimental and optimized C library for EC operations on curve secp256k1). Previously maintaine

Rusty Russell 29 Dec 29, 2022
Random Pasword Generator Sezar Crypto

Random_Pasword_Generator_Sezar_Crypto Simple Work Main design available in ana_sayfa.ui / ana_sayfa2.py Popup design available in popup.ui / anahtarp

Ahmet Gündoğdu - DRAGO 2 Dec 19, 2021
A repository for Algogenous Smart Contracts created on the Algorand Blockchain.

Smart Contacts This Repository is dedicated to code for Alogrand Smart Contracts using Choice Coin. Read Docs for how to implement Algogenous Smart Co

Choice Coin 3 Dec 20, 2022
Message Encrypt and decrypt software // allows you to encrypt the secrete message and decrypt Another Encryption Message. |

Message-Encrypy-Decrypt-App Message Encrypt and decrypt software // allows you to encrypt the secrete message and decrypt Another Encryption Message.

Abdulrahman-Haji 2 Dec 16, 2021
Bot to trade crypto trading ranges

crypto-trading-bot Crypto bot with DCA or GRID trading strategy Sends notifictions to telegram chat Crypto bot with webhook feature which can be used

3 Jun 18, 2021
Pogramme de chiffrement et déchiffrement césar d'un message en python3.

Chiffrement Cesar En Python3 Pogramme de chiffrement et déchiffrement césar d'un message en python3. Explication du chiffrement César avec complexité

Malik Makkes 1 Mar 26, 2022
Tools for running airdrop and token distribution campaigns on the Solana blockchain.

Overview This repository contains some of the scripts we have used for running our airdrop campaigns and other distributions. Initially, all of these

147 Nov 17, 2022