Dataset and baseline code for the VocalSound dataset (ICASSP2022).

Overview

VocalSound: A Dataset for Improving Human Vocal Sounds Recognition

Introduction

VocalSound Poster

VocalSound is a free dataset consisting of 21,024 crowdsourced recordings of laughter, sighs, coughs, throat clearing, sneezes, and sniffs from 3,365 unique subjects. The VocalSound dataset also contains meta information such as speaker age, gender, native language, country, and health condition.

This repository contains the official code of the data preparation and baseline experiment in the ICASSP paper VocalSound: A Dataset for Improving Human Vocal Sounds Recognition (Yuan Gong, Jin Yu, and James Glass; MIT & Signify). Specifically, we provide an extremely simple one-click Google Colab script Open In Colab for the baseline experiment, no GPU / local data downloading is needed.

The dataset is ideal for:

  • Build vocal sound recognizer.
  • Research on removing model bias on various speaker groups.
  • Evaluate pretrained models (e.g., those trained with AudioSet) on vocal sound classification to check their generalization ability.
  • Combine with existing large-scale general audio dataset to improve the vocal sound recognition performance.

Citing

Please cite our paper(s) if you find the VocalSound dataset and code useful. The first paper proposes introduces the VocalSound dataset and the second paper describes the training pipeline and model we used for the baseline experiment.

@INPROCEEDINGS{gong_vocalsound,
  author={Gong, Yuan and Yu, Jin and Glass, James},
  booktitle={ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={Vocalsound: A Dataset for Improving Human Vocal Sounds Recognition}, 
  year={2022},
  pages={151-155},
  doi={10.1109/ICASSP43922.2022.9746828}}
@ARTICLE{gong_psla, 
    author={Gong, Yuan and Chung, Yu-An and Glass, James},
    title={PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation}, 
    journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},  
    year={2021}, 
    doi={10.1109/TASLP.2021.3120633}
}

Download VocalSound

The VocalSound dataset can be downloaded as a single .zip file:

Sample Recordings (Listen to it without downloading)

VocalSound 44.1kHz Version (4.5 GB)

VocalSound 16kHz Version (1.7 GB, used in our baseline experiment)

(Mirror Links) 腾讯微云下载链接: 试听24个样本16kHz版本44.1kHz版本

If you plan to reproduce our baseline experiments using our Google Colab script, you do NOT need to download it manually, our script will download and process the 16kHz version automatically.

Creative Commons License
The VocalSound dataset is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Dataset Details

data
├──readme.txt
├──class_labels_indices_vs.csv # include label code and name information
├──audio_16k
│  ├──f0003_0_cough.wav # female speaker, id=0003, 0=first collection (most spks only record once, but there are exceptions), cough
│  ├──f0003_0_laughter.wav
│  ├──f0003_0_sigh.wav
│  ├──f0003_0_sneeze.wav
│  ├──f0003_0_sniff.wav
│  ├──f0003_0_throatclearing.wav
│  ├──f0004_0_cough.wav # data from another female speaker 0004
│   ... (21024 files in total)
│   
├──audio_44k
│    # same recordings with those in data/data_16k, but are no downsampled
│   ├──f0003_0_cough.wav
│    ... (21024 files in total)
│
├──datafiles  # json datafiles that we use in our baseline experiment, you can ignore it if you don't use our training pipeline
│  ├──all.json  # all data
│  ├──te.json  # test data
│  ├──tr.json  # training data
│  ├──val.json  # validation data
│  └──subtest # subset of the test set, for fine-grained evaluation
│     ├──te_age1.json  # age [18-25]
│     ├──te_age2.json  # age [26-48]
│     ├──te_age3.json  # age [49-80]
│     ├──te_female.json
│     └──te_male.json
│
└──meta  # Meta information of the speakers [spk_id, gender, age, country, native language, health condition (no=no problem)]
   ├──all_meta.json  # all data
   ├──te_meta.json  # test data
   ├──tr_meta.json  # training data
   └──val_meta.json  # validation data

Baseline Experiment

Option 1. One-Click Google Colab Experiment Open In Colab

We provide an extremely simple one-click Google Colab script for the baseline experiment.

What you need:

  • A free google account with Google Drive free space > 5Gb
    • A (paid) Google Colab Pro plan could speed up training, but is not necessary. Free version can run the script, just a bit slower.

What you don't need:

  • Download VocalSound manually (The Colab script download it to your Google Drive automatically)
  • GPU or any other hardware (Google Colab provides free GPUs)
  • Any enviroment setting and package installation (Google Colab provides a ready-to-use environment)
  • A specific operating system (You only need a web browser, e.g., Chrome)

Please Note

  • This script is slightly different with our local code, but the performance is not impacted.
  • Free Google Colab might be slow and unstable. In our test, it takes ~5 minutes to train the model for one epoch with a free Colab account.

To run the baseline experiment

  • Make sure your Google Drive is mounted. You don't need to do it by yourself, but Google Colab will ask permission to acess your Google Drive when you run the script, please allow it if you want to use Google Drive.
  • Make sure GPU is enabled for Colab. To do so, go to the top menu > Edit > Notebook settings and select GPU as Hardware accelerator.
  • Run the script. Just press Ctrl+F9 or go to runtime menu on top and click "run all" option. That's it.

Option 2. Run Experiment Locally

We also provide a recipe for local experiments.

Compared with the Google Colab online script, it has following advantages:

  • It can be faster and more stable than online Google Colab (free version) if you have fast GPUs.
  • It is basically the original code we used for our paper, so it should reproduce the exact numbers in the paper.

Step 1. Clone or download this repository and set it as the working directory, create a virtual environment and install the dependencies.

cd vocalsound/ 
python3 -m venv venv-vs
source venv-vs/bin/activate
pip install -r requirements.txt 

Step 2. Download the VocalSound dataset and process it.

cd data/
wget https://www.dropbox.com/s/c5ace70qh1vbyzb/vs_release_16k.zip?dl=0 -O vs_release_16k.zip
unzip vs_release_16k.zip
cd ../src
python prep_data.py

# you can provide a --data_dir augment if you download the data somewhere else
# python prep_data.py --data_dir absolute_path/data

Step 3. Run the baseline experiment

chmod 777 run.sh
./run.sh

# or slurm user
#sbatch run.sh

We test both options before this release, you should get similar accuracies.

Accuracy (%) Colab Script Open In Colab Local Script ICASSP Paper
Validation Set 91.1 90.2 90.1±0.2
All Test Set 91.6 90.6 90.5±0.2
Test Age 18-25 93.4 92.3 91.5±0.3
Test Age 26-48 90.8 90.0 90.1±0.2
Test Age 49-80 92.2 90.2 90.9±1.6
Test Male 89.8 89.6 89.2±0.5
Test Female 93.4 91.6 91.9±0.1
Model Implementation torchvision EfficientNet PSLA EfficientNet PSLA EfficientNet
Batch Size 80 100 100
GPU Google Colab Free 4X Titan 4X Titan
Training Time (30 Epochs) ~2.5 Hours ~1 Hour ~1 Hour

Contact

If you have a question, please bring up an issue (preferred) or send me an email [email protected].

Owner
Yuan Gong
Postdoc, MIT CSAIL
Yuan Gong
controls volume using hand gestures

controls volume using hand gestures

1 Oct 11, 2021
Welcome to Nexus. Your personal virtual assistant

AI Voice Assistant Welcome to Nexus voice assistant Description Have you ever heard of voice assistants like Cortana, Siri, Google assistant, and Alex

Mustafah Zacs 1 Jan 10, 2022
Dataset and baseline code for the VocalSound dataset (ICASSP2022).

VocalSound: A Dataset for Improving Human Vocal Sounds Recognition Introduction Citing Download VocalSound Dataset Details Baseline Experiment Contact

Yuan Gong 58 Jan 03, 2023
A small project where I identify notes and key harmonies in a piece of music and use them further to recreate and generate the same piece of music through Python

A small project where I identify notes and key harmonies in a piece of music and use them further to recreate and generate the same piece of music through Python

5 Oct 07, 2022
Nayeli: cool telegram groups vc music project

Nayeli-music Nayeli 🥀 is cool telegram 🍎 groups vc music project 🎋 . Nayeli-music Nayeli Deployment 🎋 📲 Esy deploy 🐾️ Source Owner ♥️ ❄️ He is s

Kasun bandara 2 Dec 20, 2021
L-SpEx: Localized Target Speaker Extraction

L-SpEx: Localized Target Speaker Extraction The data configuration and simulation of L-SpEx. The code scripts will be released in the future. Data Gen

Meng Ge 20 Jan 02, 2023
Accompanying code for our paper "Point Cloud Audio Processing"

Point Cloud Audio Processing Krishna Subramani1, Paris Smaragdis1 1UIUC Paper For the necessary libraries/prerequisites, please use conda/anaconda to

Krishna Subramani 17 Nov 17, 2022
Sparse Beta-Divergence Tensor Factorization Library

NTFLib Sparse Beta-Divergence Tensor Factorization Library Based off of this beta-NTF project this library is specially-built to handle tensors where

Stitch Fix Technology 46 Jan 08, 2022
Carnatic Notes Predictor for audio files

Carnatic Notes Predictor for audio files Link for live application: https://share.streamlit.io/pradeepak1/carnatic-notes-predictor-for-audio-files/mai

1 Nov 06, 2021
Play any song directly into your group voice chat.

Telegram VCPlayer Bot Play any song directly into your group voice chat. Official Bot : VCPlayerBot | Discussion Group : VoiceChat Music Player Suppor

Shubham Kumar 50 Nov 21, 2022
Gradient - A Python program designed to create a reactive and ambient music listening experience

Gradient is a Python program designed to create a reactive and ambient music listening experience.

Alexander Vega 2 Jan 24, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
Voice to Text using Raspberry Pi

This module will help to convert your voice (speech) into text using Speech Recognition Library. You can control the devices or you can perform the desired tasks by the word recognition

Raspberry_Pi Pakistan 2 Dec 15, 2021
This library provides common speech features for ASR including MFCCs and filterbank energies.

python_speech_features This library provides common speech features for ASR including MFCCs and filterbank energies. If you are not sure what MFCCs ar

James Lyons 2.2k Jan 04, 2023
Mopidy is an extensible music server written in Python

Mopidy Mopidy is an extensible music server written in Python. Mopidy plays music from local disk, Spotify, SoundCloud, Google Play Music, and more. Y

Mopidy 7.6k Jan 05, 2023
Royal Music You can play music and video at a time in vc

Royals-Music Royal Music You can play music and video at a time in vc Commands SOON String STRING_SESSION Deployment 🎖 Credits • 🇸ᴏᴍʏᴀ⃝🇯ᴇᴇᴛ • 🇴ғғɪ

2 Nov 23, 2021
This is my voice assistant Patric!

voice-assistant This is my voice assistant Patric! You can add can add commands and even modify his name Indice How to use Installation guide How to u

Norbert Gabos 1 Jun 28, 2022
An app made in Python using the PyTube and Tkinter libraries to download videos and MP3 audio.

yt-dl (GUI Edition) An app made in Python using the PyTube and Tkinter libraries to download videos and MP3 audio. How do I download this? Windows: Fi

1 Oct 23, 2021
A Python wrapper around the Soundcloud API

soundcloud-python A friendly wrapper around the Soundcloud API. Installation To install soundcloud-python, simply: pip install soundcloud Or if you'r

SoundCloud 84 Dec 31, 2022
:notes: Cross-platform music player

Exaile Exaile is a music player with a simple interface and powerful music management capabilities. Features include automatic fetching of album art,

Exaile 327 Dec 19, 2022