Info for The Great DataTas plot-a-thon

Overview

The Great DataTas plot-a-thon

Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data from 2020-09-22 for our competition. We have chosen a non-scientific dataset for participants to create beautiful plots, so anyone can enter our competition.

Our rules for entry are:

  • Entries should have code and final figure available in a public GitHub repository (contact us if you need help with this).
  • Entries can use any programming language.
  • Entries must have a Creative Commons license because we will share them via our social media and GitHub repo.
  • Editing software is allowed but discouraged.
  • External supporting data is allowed and encouraged.
  • Entries must be submitted by the end of day of Sunday, November 21.
    Optional:
  • Provide your twitter handle.

The criteria for choosing the winner are:

  • Three independent judges from EchoView, BOM and UTAS/CLEX will be judging the entries.
  • Figures must be reproducible.
  • Scripts must be easy to read and understand.
  • Figures must convey main message clearly.
  • Scripts must be developed by person submitting the entry, no copying.

Picture of the Coveted Trophy

Event Timing

We will be having an info session on Wednesday, November 10th to explain all details of this competition. Join us in person at IMAS or online to find out how you can participate.

  • Competition starts at 4pm November 10th following the DataTas event
  • Entries are due midnight (11:59 pm) on November 21st, giving you 10 days to put together your entry. During those ten days, we encourage you to work with others and share ideas, but your final entry must be your own work.
  • The winners will be announced at our final event of the year, on Thursday, November 25th at 2pm in the IMAS Aurora Lecture Theatre. Only one person can win the DataTas trophy and be crowned the plot-a-thon champion!

About the Data (From The Tidy Tuesday Page)

Picture of the Himalayas from Wikipedia

Himalayan Climbing Expeditions

The data this week comes from The Himalayan Database.

The Himalayan Database is a compilation of records for all expeditions that have climbed in the Nepal Himalaya. The database is based on the expedition archives of Elizabeth Hawley, a longtime journalist based in Kathmandu, and it is supplemented by information gathered from books, alpine journals and correspondence with Himalayan climbers.

The data cover all expeditions from 1905 through Spring 2019 to more than 465 significant peaks in Nepal. Also included are expeditions to both sides of border peaks such as Everest, Cho Oyu, Makalu and Kangchenjunga as well as to some smaller border peaks. Data on expeditions to trekking peaks are included for early attempts, first ascents and major accidents.

h/t to Alex Cookson for sharing and cleaning this data!

This blog post by Alex Cookson explores the data in greater detail.

I don't want to underplay that there are some positives and some awful negatives for native Sherpa climbers. One-third of Everest deaths are Sherpa Climbers.

Also National Geographic has 5 Ways to help the Sherpas of Everest.

Get the data here

# Get the Data

# Read in with tidytuesdayR package 
# Install from CRAN via: install.packages("tidytuesdayR")
# This loads the readme and all the datasets for the week of interest

# Either ISO-8601 date or year/week works!

tuesdata <- tidytuesdayR::tt_load('2020-09-22')
tuesdata <- tidytuesdayR::tt_load(2020, week = 39)

climbers <- tuesdata$climbers

# Or read in the data manually

members <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv')
expeditions <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/expeditions.csv')
peaks <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/peaks.csv')

For other languages, see the additional files in this repository.

Data Dictionary

peaks.csv

variable class description
peak_id character Unique identifier for peak
peak_name character Common name of peak
peak_alternative_name character Alternative name of peak (for example, the "Mount Everest" is "Sagarmatha" in Nepalese)
height_metres double Height of peak in metres
climbing_status character Whether the peak has been climbed
first_ascent_year double Year of first successful ascent, if applicable
first_ascent_country character Country name(s) of expedition members part of the first ascent. Can have multiple values if members were from different countries. Country name is as of date of ascent (for example, "W Germany" for ascents before 1990).
first_ascent_expedition_id character Unique identifier for expedition. Can be linked to expeditions or members tables.

expeditions.csv

variable class description
expedition_id character Unique identifier for expedition. Can be linked to peaks or members tables.
peak_id character Unique identifier for peak. Can be linked to peaks table.
peak_name character Common name for peak
year double Year of expedition
season character Season of expedition (Spring, Summer, etc.)
basecamp_date date Date of expedition arrival at basecamp
highpoint_date date Date of expedition summiting the peak for the first time or, if peak wasn't reached, date of reaching its highpoint
termination_date date Date the expedition was terminated
termination_reason character Primary reason the expedition was terminated. There are two possibilities for a successful expeditions, depending on whether the main peak or a sub-peak was summitted.
highpoint_metres double Elevation highpoint of the expedition
members double Number of expedition members. For expeditions in Nepal, this is usually the number of foreigners listed on the expedition permit. For expeditions in China, this is usually the number of non-hired members.
member_deaths double Number of expeditions members who died
hired_staff double Number of hired staff who went above basecamp
hired_staff_deaths double Number of hired staff who died
oxygen_used logical Whether oxygen was used by at least one member of the expedition
trekking_agency character Name of the trekking agency

members.csv

variable class description
expedition_id character Unique identifier for expedition. Can be linked to peaks or members tables.
member_id character Unique identifier for the person. This is not consistent across expeditions, so you cannot use a single member_id to look up all expeditions a person was part of.
peak_id character Unique identifier for peak. Can be linked to peaks table.
peak_name character Common name for peak
year double Year of expedition
season character Season of expedition (Spring, Summer, etc.)
sex character Sex of the person
age double Age of the person. Depending on the best available data, this could be as of the summit date, the date of death, or the date of arrival at basecamp.
citizenship character Citizenship of the person
expedition_role character Role of the person on the expedition
hired logical Whether the person was hired by the expedition
highpoint_metres double Elevation highpoint of the person
success logical Whether the person was successful in summitting a main peak or sub-peak, depending on the goal of expedition
solo logical Whether the person attempted a solo ascent
oxygen_used logical Whether the person used oxygen
died logical Whether the person died
death_cause character Primary cause of death
death_height_metres double Height at which the person died
injured logical Whether the person was injured
injury_type character Primary cause of injury
injury_height_metres double Height at which the injury occurred

Cleaning Script (R Only, see files in repo for Python and R.)

# Libraries
library(tidyverse)
library(janitor)


# Peaks
peaks <- read_csv("./himalayan-expeditions/raw/peaks.csv") %>%
  transmute(
    peak_id = PEAKID,
    peak_name = PKNAME,
    peak_alternative_name = PKNAME2,
    height_metres = HEIGHTM,
    climbing_status = PSTATUS,
    first_ascent_year = PYEAR,
    first_ascent_country = PCOUNTRY,
    first_ascent_expedition_id = PEXPID
  ) %>%
  mutate(
    climbing_status = case_when(
      climbing_status == 0 ~ "Unknown",
      climbing_status == 1 ~ "Unclimbed",
      climbing_status == 2 ~ "Climbed"
    )
  )

# Create small dataframe of peak names to join to other dataframes
peak_names <- peaks %>%
  select(peak_id, peak_name)

# Expeditions
expeditions <- read_csv("./himalayan-expeditions/raw/exped.csv") %>%
  left_join(peak_names, by = c("PEAKID" = "peak_id")) %>%
  transmute(
    expedition_id = EXPID,
    peak_id = PEAKID,
    peak_name,
    year = YEAR,
    season = SEASON,
    basecamp_date = BCDATE,
    highpoint_date = SMTDATE,
    termination_date = TERMDATE,
    termination_reason = TERMREASON,
    # Highpoint of 0 is most likely missing value
    highpoint_metres = ifelse(HIGHPOINT == 0, NA, HIGHPOINT),
    members = TOTMEMBERS,
    member_deaths = MDEATHS,
    hired_staff = TOTHIRED,
    hired_staff_deaths = HDEATHS,
    oxygen_used = O2USED,
    trekking_agency = AGENCY
  ) %>%
  mutate(
    termination_reason = case_when(
      termination_reason == 0 ~ "Unknown",
      termination_reason == 1 ~ "Success (main peak)",
      termination_reason == 2 ~ "Success (subpeak)",
      termination_reason == 3 ~ "Success (claimed)",
      termination_reason == 4 ~ "Bad weather (storms, high winds)",
      termination_reason == 5 ~ "Bad conditions (deep snow, avalanching, falling ice, or rock)",
      termination_reason == 6 ~ "Accident (death or serious injury)",
      termination_reason == 7 ~ "Illness, AMS, exhaustion, or frostbite",
      termination_reason == 8 ~ "Lack (or loss) of supplies or equipment",
      termination_reason == 9 ~ "Lack of time",
      termination_reason == 10 ~ "Route technically too difficult, lack of experience, strength, or motivation",
      termination_reason == 11 ~ "Did not reach base camp",
      termination_reason == 12 ~ "Did not attempt climb",
      termination_reason == 13 ~ "Attempt rumoured",
      termination_reason == 14 ~ "Other"
    ),
    season = case_when(
      season == 0 ~ "Unknown",
      season == 1 ~ "Spring",
      season == 2 ~ "Summer",
      season == 3 ~ "Autumn",
      season == 4 ~ "Winter"
    )
  )

members <-
  read_csv("./himalayan-expeditions/raw/members.csv", guess_max = 100000) %>%
  left_join(peak_names, by = c("PEAKID" = "peak_id")) %>%
  transmute(
    expedition_id = EXPID,
    member_id = paste(EXPID, MEMBID, sep = "-"),
    peak_id = PEAKID,
    peak_name,
    year = MYEAR,
    season = MSEASON,
    sex = SEX,
    age = CALCAGE,
    citizenship = CITIZEN,
    expedition_role = STATUS,
    hired = HIRED,
    # Highpoint of 0 is most likely missing value
    highpoint_metres = ifelse(MPERHIGHPT == 0, NA, MPERHIGHPT),
    success = MSUCCESS,
    solo = MSOLO,
    oxygen_used = MO2USED,
    died = DEATH,
    death_cause = DEATHTYPE,
    # Height of 0 is most likely missing value
    death_height_metres = ifelse(DEATHHGTM == 0, NA, DEATHHGTM),
    injured = INJURY,
    injury_type = INJURYTYPE,
    # Height of 0 is most likely missing value
    injury_height_metres = ifelse(INJURYHGTM == 0, NA, INJURYHGTM)
  ) %>%
  mutate(
    season = case_when(
      season == 0 ~ "Unknown",
      season == 1 ~ "Spring",
      season == 2 ~ "Summer",
      season == 3 ~ "Autumn",
      season == 4 ~ "Winter"
    ),
    age = ifelse(age == 0, NA, age),
    death_cause = case_when(
      death_cause == 0 ~ "Unspecified",
      death_cause == 1 ~ "AMS",
      death_cause == 2 ~ "Exhaustion",
      death_cause == 3 ~ "Exposure / frostbite",
      death_cause == 4 ~ "Fall",
      death_cause == 5 ~ "Crevasse",
      death_cause == 6 ~ "Icefall collapse",
      death_cause == 7 ~ "Avalanche",
      death_cause == 8 ~ "Falling rock / ice",
      death_cause == 9 ~ "Disappearance (unexplained)",
      death_cause == 10 ~ "Illness (non-AMS)",
      death_cause == 11 ~ "Other",
      death_cause == 12 ~ "Unknown"
    ),
    injury_type = case_when(
      injury_type == 0 ~ "Unspecified",
      injury_type == 1 ~ "AMS",
      injury_type == 2 ~ "Exhaustion",
      injury_type == 3 ~ "Exposure / frostbite",
      injury_type == 4 ~ "Fall",
      injury_type == 5 ~ "Crevasse",
      injury_type == 6 ~ "Icefall collapse",
      injury_type == 7 ~ "Avalanche",
      injury_type == 8 ~ "Falling rock / ice",
      injury_type == 9 ~ "Disappearance (unexplained)",
      injury_type == 10 ~ "Illness (non-AMS)",
      injury_type == 11 ~ "Other",
      injury_type == 12 ~ "Unknown"
    ),
    death_cause = ifelse(died, death_cause, NA_character_),
    death_height_metres = ifelse(died, death_height_metres, NA),
    injury_type = ifelse(injured, injury_type, NA_character_),
    injury_height_metres = ifelse(injured, injury_height_metres, NA)
  )


### Write to CSV
write_csv(expeditions, "./himalayan-expeditions/expeditions.csv")
write_csv(members, "./himalayan-expeditions/members.csv")
write_csv(peaks, "./himalayan-expeditions/peaks.csv")

eoplatform is a Python package that aims to simplify Remote Sensing Earth Observation by providing actionable information on a wide swath of RS platforms and provide a simple API for downloading and visualizing RS imagery

An Earth Observation Platform Earth Observation made easy. Report Bug | Request Feature About eoplatform is a Python package that aims to simplify Rem

Matthew Tralka 4 Aug 11, 2022
Simple spectra visualization tool for astronomers

SpecViewer A simple visualization tool for astronomers. Dependencies Python = 3.7.4 PyQt5 = 5.15.4 pyqtgraph == 0.10.0 numpy = 1.19.4 How to use py

5 Oct 07, 2021
Python package to Create, Read, Write, Edit, and Visualize GSFLOW models

pygsflow pyGSFLOW is a python package to Create, Read, Write, Edit, and Visualize GSFLOW models API Documentation pyGSFLOW API documentation can be fo

pyGSFLOW 21 Dec 14, 2022
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX

ForceAtlas2 for Python A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the

Bhargav Chippada 227 Jan 05, 2023
Visualize data of Vietnam's regions with interactive maps.

Plotting Vietnam Development Map This is my personal project that I use plotly to analyse and visualize data of Vietnam's regions with interactive map

1 Jun 26, 2022
MPL Plotter is a Matplotlib based Python plotting library built with the goal of delivering publication-quality plots concisely.

MPL Plotter is a Matplotlib based Python plotting library built with the goal of delivering publication-quality plots concisely.

Antonio López Rivera 162 Nov 11, 2022
Generate a roam research like Network Graph view from your Notion pages.

Notion Graph View Export Notion pages to a Roam Research like graph view.

Steve Sun 214 Jan 07, 2023
Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects

carcassonne_tools Graphical display tools, to help students debug their class implementations in the Carcassonne family of projects NOTE NOTE NOTE The

1 Nov 08, 2021
在原神中使用围栏绘图

yuanshen_draw 在原神中使用围栏绘图 文件说明 toLines.py 将一张图片转换为对应的线条集合,视频可以按帧转换。 draw.py 在原神家园里绘制一张线条图。 draw_video.py 在原神家园里绘制视频(自动按帧摆放,截图(win)并回收) cat_to_video.py

14 Oct 08, 2022
a simple REPL display lib for circuitpython

Circuitpython-termio-lib a simple REPL display lib for circuitpython Fonctions cls clear terminal screen and set cursor on top left : coords 0,0 usage

BeBoXoS 1 Nov 17, 2021
FURY - A software library for scientific visualization in Python

Free Unified Rendering in Python A software library for scientific visualization in Python. General Information • Key Features • Installation • How to

169 Dec 21, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 01, 2023
Learn Data Science with focus on adding value with the most efficient tech stack.

DataScienceWithPython Get started with Data Science with Python An engaging journey to become a Data Scientist with Python TL;DR Download all Jupyter

Learn Python with Rune 110 Dec 22, 2022
The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain

The Spectral Diagram (SD) is a new tool for the comparison of time series in the frequency domain. The SD provides a novel way to display the coherence function, power, amplitude, phase, and skill sc

Mabel 3 Oct 10, 2022
Automatically generate GitHub activity!

Commit Bot Automatically generate GitHub activity! We've all wanted to be the developer that commits every day, but that requires a lot of work. Let's

Ricky 4 Jun 07, 2022
It's an application to calculate I from v and r. It can also plot a graph between V vs I.

Ohm-s-Law-Visualizer It's an application to calculate I from v and r using Ohm's Law. It can also plot a graph between V vs I. Story I'm doing my Unde

Sihab Sahariar 1 Nov 20, 2021
Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js

pivottablejs: the Python module Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js Installation pip install pivot

Nicolas Kruchten 512 Dec 26, 2022
Advanced hot reloading for Python

The missing element of Python - Advanced Hot Reloading Details Reloadium adds hot reloading also called "edit and continue" functionality to any Pytho

Reloadware 1.9k Jan 04, 2023
A python wrapper for creating and viewing effects for Matt Parker's christmas tree.

Christmas Tree Visualizer A python wrapper for creating and viewing effects for Matt Parker's christmas tree. Displays py or csv effect files and allo

4 Nov 22, 2022
LinkedIn connections analyzer

LinkedIn Connections Analyzer 🔗 https://linkedin-analzyer.herokuapp.com Hey hey 👋 , welcome to my LinkedIn connections analyzer. I recently found ou

Okkar Min 5 Sep 13, 2022