Info for The Great DataTas plot-a-thon

Overview

The Great DataTas plot-a-thon

Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data from 2020-09-22 for our competition. We have chosen a non-scientific dataset for participants to create beautiful plots, so anyone can enter our competition.

Our rules for entry are:

  • Entries should have code and final figure available in a public GitHub repository (contact us if you need help with this).
  • Entries can use any programming language.
  • Entries must have a Creative Commons license because we will share them via our social media and GitHub repo.
  • Editing software is allowed but discouraged.
  • External supporting data is allowed and encouraged.
  • Entries must be submitted by the end of day of Sunday, November 21.
    Optional:
  • Provide your twitter handle.

The criteria for choosing the winner are:

  • Three independent judges from EchoView, BOM and UTAS/CLEX will be judging the entries.
  • Figures must be reproducible.
  • Scripts must be easy to read and understand.
  • Figures must convey main message clearly.
  • Scripts must be developed by person submitting the entry, no copying.

Picture of the Coveted Trophy

Event Timing

We will be having an info session on Wednesday, November 10th to explain all details of this competition. Join us in person at IMAS or online to find out how you can participate.

  • Competition starts at 4pm November 10th following the DataTas event
  • Entries are due midnight (11:59 pm) on November 21st, giving you 10 days to put together your entry. During those ten days, we encourage you to work with others and share ideas, but your final entry must be your own work.
  • The winners will be announced at our final event of the year, on Thursday, November 25th at 2pm in the IMAS Aurora Lecture Theatre. Only one person can win the DataTas trophy and be crowned the plot-a-thon champion!

About the Data (From The Tidy Tuesday Page)

Picture of the Himalayas from Wikipedia

Himalayan Climbing Expeditions

The data this week comes from The Himalayan Database.

The Himalayan Database is a compilation of records for all expeditions that have climbed in the Nepal Himalaya. The database is based on the expedition archives of Elizabeth Hawley, a longtime journalist based in Kathmandu, and it is supplemented by information gathered from books, alpine journals and correspondence with Himalayan climbers.

The data cover all expeditions from 1905 through Spring 2019 to more than 465 significant peaks in Nepal. Also included are expeditions to both sides of border peaks such as Everest, Cho Oyu, Makalu and Kangchenjunga as well as to some smaller border peaks. Data on expeditions to trekking peaks are included for early attempts, first ascents and major accidents.

h/t to Alex Cookson for sharing and cleaning this data!

This blog post by Alex Cookson explores the data in greater detail.

I don't want to underplay that there are some positives and some awful negatives for native Sherpa climbers. One-third of Everest deaths are Sherpa Climbers.

Also National Geographic has 5 Ways to help the Sherpas of Everest.

Get the data here

# Get the Data

# Read in with tidytuesdayR package 
# Install from CRAN via: install.packages("tidytuesdayR")
# This loads the readme and all the datasets for the week of interest

# Either ISO-8601 date or year/week works!

tuesdata <- tidytuesdayR::tt_load('2020-09-22')
tuesdata <- tidytuesdayR::tt_load(2020, week = 39)

climbers <- tuesdata$climbers

# Or read in the data manually

members <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv')
expeditions <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/expeditions.csv')
peaks <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/peaks.csv')

For other languages, see the additional files in this repository.

Data Dictionary

peaks.csv

variable class description
peak_id character Unique identifier for peak
peak_name character Common name of peak
peak_alternative_name character Alternative name of peak (for example, the "Mount Everest" is "Sagarmatha" in Nepalese)
height_metres double Height of peak in metres
climbing_status character Whether the peak has been climbed
first_ascent_year double Year of first successful ascent, if applicable
first_ascent_country character Country name(s) of expedition members part of the first ascent. Can have multiple values if members were from different countries. Country name is as of date of ascent (for example, "W Germany" for ascents before 1990).
first_ascent_expedition_id character Unique identifier for expedition. Can be linked to expeditions or members tables.

expeditions.csv

variable class description
expedition_id character Unique identifier for expedition. Can be linked to peaks or members tables.
peak_id character Unique identifier for peak. Can be linked to peaks table.
peak_name character Common name for peak
year double Year of expedition
season character Season of expedition (Spring, Summer, etc.)
basecamp_date date Date of expedition arrival at basecamp
highpoint_date date Date of expedition summiting the peak for the first time or, if peak wasn't reached, date of reaching its highpoint
termination_date date Date the expedition was terminated
termination_reason character Primary reason the expedition was terminated. There are two possibilities for a successful expeditions, depending on whether the main peak or a sub-peak was summitted.
highpoint_metres double Elevation highpoint of the expedition
members double Number of expedition members. For expeditions in Nepal, this is usually the number of foreigners listed on the expedition permit. For expeditions in China, this is usually the number of non-hired members.
member_deaths double Number of expeditions members who died
hired_staff double Number of hired staff who went above basecamp
hired_staff_deaths double Number of hired staff who died
oxygen_used logical Whether oxygen was used by at least one member of the expedition
trekking_agency character Name of the trekking agency

members.csv

variable class description
expedition_id character Unique identifier for expedition. Can be linked to peaks or members tables.
member_id character Unique identifier for the person. This is not consistent across expeditions, so you cannot use a single member_id to look up all expeditions a person was part of.
peak_id character Unique identifier for peak. Can be linked to peaks table.
peak_name character Common name for peak
year double Year of expedition
season character Season of expedition (Spring, Summer, etc.)
sex character Sex of the person
age double Age of the person. Depending on the best available data, this could be as of the summit date, the date of death, or the date of arrival at basecamp.
citizenship character Citizenship of the person
expedition_role character Role of the person on the expedition
hired logical Whether the person was hired by the expedition
highpoint_metres double Elevation highpoint of the person
success logical Whether the person was successful in summitting a main peak or sub-peak, depending on the goal of expedition
solo logical Whether the person attempted a solo ascent
oxygen_used logical Whether the person used oxygen
died logical Whether the person died
death_cause character Primary cause of death
death_height_metres double Height at which the person died
injured logical Whether the person was injured
injury_type character Primary cause of injury
injury_height_metres double Height at which the injury occurred

Cleaning Script (R Only, see files in repo for Python and R.)

# Libraries
library(tidyverse)
library(janitor)


# Peaks
peaks <- read_csv("./himalayan-expeditions/raw/peaks.csv") %>%
  transmute(
    peak_id = PEAKID,
    peak_name = PKNAME,
    peak_alternative_name = PKNAME2,
    height_metres = HEIGHTM,
    climbing_status = PSTATUS,
    first_ascent_year = PYEAR,
    first_ascent_country = PCOUNTRY,
    first_ascent_expedition_id = PEXPID
  ) %>%
  mutate(
    climbing_status = case_when(
      climbing_status == 0 ~ "Unknown",
      climbing_status == 1 ~ "Unclimbed",
      climbing_status == 2 ~ "Climbed"
    )
  )

# Create small dataframe of peak names to join to other dataframes
peak_names <- peaks %>%
  select(peak_id, peak_name)

# Expeditions
expeditions <- read_csv("./himalayan-expeditions/raw/exped.csv") %>%
  left_join(peak_names, by = c("PEAKID" = "peak_id")) %>%
  transmute(
    expedition_id = EXPID,
    peak_id = PEAKID,
    peak_name,
    year = YEAR,
    season = SEASON,
    basecamp_date = BCDATE,
    highpoint_date = SMTDATE,
    termination_date = TERMDATE,
    termination_reason = TERMREASON,
    # Highpoint of 0 is most likely missing value
    highpoint_metres = ifelse(HIGHPOINT == 0, NA, HIGHPOINT),
    members = TOTMEMBERS,
    member_deaths = MDEATHS,
    hired_staff = TOTHIRED,
    hired_staff_deaths = HDEATHS,
    oxygen_used = O2USED,
    trekking_agency = AGENCY
  ) %>%
  mutate(
    termination_reason = case_when(
      termination_reason == 0 ~ "Unknown",
      termination_reason == 1 ~ "Success (main peak)",
      termination_reason == 2 ~ "Success (subpeak)",
      termination_reason == 3 ~ "Success (claimed)",
      termination_reason == 4 ~ "Bad weather (storms, high winds)",
      termination_reason == 5 ~ "Bad conditions (deep snow, avalanching, falling ice, or rock)",
      termination_reason == 6 ~ "Accident (death or serious injury)",
      termination_reason == 7 ~ "Illness, AMS, exhaustion, or frostbite",
      termination_reason == 8 ~ "Lack (or loss) of supplies or equipment",
      termination_reason == 9 ~ "Lack of time",
      termination_reason == 10 ~ "Route technically too difficult, lack of experience, strength, or motivation",
      termination_reason == 11 ~ "Did not reach base camp",
      termination_reason == 12 ~ "Did not attempt climb",
      termination_reason == 13 ~ "Attempt rumoured",
      termination_reason == 14 ~ "Other"
    ),
    season = case_when(
      season == 0 ~ "Unknown",
      season == 1 ~ "Spring",
      season == 2 ~ "Summer",
      season == 3 ~ "Autumn",
      season == 4 ~ "Winter"
    )
  )

members <-
  read_csv("./himalayan-expeditions/raw/members.csv", guess_max = 100000) %>%
  left_join(peak_names, by = c("PEAKID" = "peak_id")) %>%
  transmute(
    expedition_id = EXPID,
    member_id = paste(EXPID, MEMBID, sep = "-"),
    peak_id = PEAKID,
    peak_name,
    year = MYEAR,
    season = MSEASON,
    sex = SEX,
    age = CALCAGE,
    citizenship = CITIZEN,
    expedition_role = STATUS,
    hired = HIRED,
    # Highpoint of 0 is most likely missing value
    highpoint_metres = ifelse(MPERHIGHPT == 0, NA, MPERHIGHPT),
    success = MSUCCESS,
    solo = MSOLO,
    oxygen_used = MO2USED,
    died = DEATH,
    death_cause = DEATHTYPE,
    # Height of 0 is most likely missing value
    death_height_metres = ifelse(DEATHHGTM == 0, NA, DEATHHGTM),
    injured = INJURY,
    injury_type = INJURYTYPE,
    # Height of 0 is most likely missing value
    injury_height_metres = ifelse(INJURYHGTM == 0, NA, INJURYHGTM)
  ) %>%
  mutate(
    season = case_when(
      season == 0 ~ "Unknown",
      season == 1 ~ "Spring",
      season == 2 ~ "Summer",
      season == 3 ~ "Autumn",
      season == 4 ~ "Winter"
    ),
    age = ifelse(age == 0, NA, age),
    death_cause = case_when(
      death_cause == 0 ~ "Unspecified",
      death_cause == 1 ~ "AMS",
      death_cause == 2 ~ "Exhaustion",
      death_cause == 3 ~ "Exposure / frostbite",
      death_cause == 4 ~ "Fall",
      death_cause == 5 ~ "Crevasse",
      death_cause == 6 ~ "Icefall collapse",
      death_cause == 7 ~ "Avalanche",
      death_cause == 8 ~ "Falling rock / ice",
      death_cause == 9 ~ "Disappearance (unexplained)",
      death_cause == 10 ~ "Illness (non-AMS)",
      death_cause == 11 ~ "Other",
      death_cause == 12 ~ "Unknown"
    ),
    injury_type = case_when(
      injury_type == 0 ~ "Unspecified",
      injury_type == 1 ~ "AMS",
      injury_type == 2 ~ "Exhaustion",
      injury_type == 3 ~ "Exposure / frostbite",
      injury_type == 4 ~ "Fall",
      injury_type == 5 ~ "Crevasse",
      injury_type == 6 ~ "Icefall collapse",
      injury_type == 7 ~ "Avalanche",
      injury_type == 8 ~ "Falling rock / ice",
      injury_type == 9 ~ "Disappearance (unexplained)",
      injury_type == 10 ~ "Illness (non-AMS)",
      injury_type == 11 ~ "Other",
      injury_type == 12 ~ "Unknown"
    ),
    death_cause = ifelse(died, death_cause, NA_character_),
    death_height_metres = ifelse(died, death_height_metres, NA),
    injury_type = ifelse(injured, injury_type, NA_character_),
    injury_height_metres = ifelse(injured, injury_height_metres, NA)
  )


### Write to CSV
write_csv(expeditions, "./himalayan-expeditions/expeditions.csv")
write_csv(members, "./himalayan-expeditions/members.csv")
write_csv(peaks, "./himalayan-expeditions/peaks.csv")

A Python-based non-fungible token (NFT) generator built using Samilla and Matplotlib

PyNFT A Pythonic NF (non-fungible token) generator built using Samilla and Matplotlib Use python pynft.py [amount] The intention behind this generato

Ayush Gundawar 6 Feb 07, 2022
Official Matplotlib cheat sheets

Official Matplotlib cheat sheets

Matplotlib Developers 6.7k Jan 09, 2023
Data aggregated from the reports found at the MCPS COVID Dashboard into a set of visualizations.

Montgomery County Public Schools COVID-19 Visualizer Contents About this project Data Support this project About this project Data All data we use can

James 3 Jan 19, 2022
BrowZen correlates your emotional states with the web sites you visit to give you actionable insights about how you spend your time browsing the web.

BrowZen BrowZen correlates your emotional states with the web sites you visit to give you actionable insights about how you spend your time browsing t

Nick Bild 36 Sep 28, 2022
A D3.js plugin that produces flame graphs from hierarchical data.

d3-flame-graph A D3.js plugin that produces flame graphs from hierarchical data. If you don't know what flame graphs are, check Brendan Gregg's post.

Martin Spier 740 Dec 29, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 111 Jan 03, 2023
GD-UltraHack - A Mod Menu for Geometry Dash. Specifically a MegahackV5 clone in Python. Only for Windows

GD UltraHack: The Mod Menu that Nobody asked for. This is a mod menu for the gam

zeo 1 Jan 05, 2022
clock_plot provides a simple way to visualize timeseries data, mapping 24 hours onto the 360 degrees of a polar plot

clock_plot clock_plot provides a simple way to visualize timeseries data mapping 24 hours onto the 360 degrees of a polar plot. For usage, please see

12 Aug 24, 2022
100 data puzzles for pandas, ranging from short and simple to super tricky (60% complete)

100 pandas puzzles Puzzles notebook Solutions notebook Inspired by 100 Numpy exerises, here are 100* short puzzles for testing your knowledge of panda

Alex Riley 1.9k Jan 08, 2023
Leyna's Visualizing Data With Python

Leyna's Visualizing Data Below is information on the number of bilingual students in three school districts in Massachusetts. You will also find infor

11 Oct 28, 2021
Schema validation for Xarray objects

xarray-schema Schema validation for Xarray installation This package is in the early stages of development. Install it from source: pip install git+gi

carbonplan 22 Oct 31, 2022
A small tool to test and visualize protein embeddings and amino acid proportions.

polyprotein_stats A small tool to test and visualize protein embeddings and amino acid proportions. Currently deployed on streamlit.io. Given a set of

2 Jan 07, 2023
A pandas extension that solves all problems of Jalai/Iraninan/Shamsi dates

Jalali Pandas Extentsion A pandas extension that solves all problems of Jalai/Iraninan/Shamsi dates Features Series Extenstion Convert string to Jalal

51 Jan 02, 2023
A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects.

Orbitals in Python A small collection of tools made by me, that you can use to visualize atomic orbitals in both 2D and 3D in different aspects, and o

Prakrisht Dahiya 1 Nov 25, 2021
Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion

Boltzmann visualization - Visualize the Boltzmann distribution for simple quantum models of molecular motion

1 Jan 22, 2022
A GUI for Pandas DataFrames

PandasGUI A GUI for analyzing Pandas DataFrames. Demo Installation Install latest release from PyPi: pip install pandasgui Install directly from Githu

Adam 2.8k Jan 03, 2023
Lightspin AWS IAM Vulnerability Scanner

Red-Shadow Lightspin AWS IAM Vulnerability Scanner Description Scan your AWS IAM Configuration for shadow admins in AWS IAM based on misconfigured den

Lightspin 90 Dec 14, 2022
This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and much more using Kibana Dashboard with Elasticsearch.

System Stats Visualizer This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and m

Vishal Teotia 5 Feb 06, 2022
Joyplots in Python with matplotlib & pandas :chart_with_upwards_trend:

JoyPy JoyPy is a one-function Python package based on matplotlib + pandas with a single purpose: drawing joyplots (a.k.a. ridgeline plots). The code f

Leonardo Taccari 462 Jan 02, 2023
Plotting library for IPython/Jupyter notebooks

bqplot 2-D plotting library for Project Jupyter Introduction bqplot is a 2-D visualization system for Jupyter, based on the constructs of the Grammar

3.4k Dec 29, 2022