Info for The Great DataTas plot-a-thon

Overview

The Great DataTas plot-a-thon

Datatas is organising a Data Visualisation competition: The Great DataTas plot-a-thon We will be using Tidy Tuesday data from 2020-09-22 for our competition. We have chosen a non-scientific dataset for participants to create beautiful plots, so anyone can enter our competition.

Our rules for entry are:

  • Entries should have code and final figure available in a public GitHub repository (contact us if you need help with this).
  • Entries can use any programming language.
  • Entries must have a Creative Commons license because we will share them via our social media and GitHub repo.
  • Editing software is allowed but discouraged.
  • External supporting data is allowed and encouraged.
  • Entries must be submitted by the end of day of Sunday, November 21.
    Optional:
  • Provide your twitter handle.

The criteria for choosing the winner are:

  • Three independent judges from EchoView, BOM and UTAS/CLEX will be judging the entries.
  • Figures must be reproducible.
  • Scripts must be easy to read and understand.
  • Figures must convey main message clearly.
  • Scripts must be developed by person submitting the entry, no copying.

Picture of the Coveted Trophy

Event Timing

We will be having an info session on Wednesday, November 10th to explain all details of this competition. Join us in person at IMAS or online to find out how you can participate.

  • Competition starts at 4pm November 10th following the DataTas event
  • Entries are due midnight (11:59 pm) on November 21st, giving you 10 days to put together your entry. During those ten days, we encourage you to work with others and share ideas, but your final entry must be your own work.
  • The winners will be announced at our final event of the year, on Thursday, November 25th at 2pm in the IMAS Aurora Lecture Theatre. Only one person can win the DataTas trophy and be crowned the plot-a-thon champion!

About the Data (From The Tidy Tuesday Page)

Picture of the Himalayas from Wikipedia

Himalayan Climbing Expeditions

The data this week comes from The Himalayan Database.

The Himalayan Database is a compilation of records for all expeditions that have climbed in the Nepal Himalaya. The database is based on the expedition archives of Elizabeth Hawley, a longtime journalist based in Kathmandu, and it is supplemented by information gathered from books, alpine journals and correspondence with Himalayan climbers.

The data cover all expeditions from 1905 through Spring 2019 to more than 465 significant peaks in Nepal. Also included are expeditions to both sides of border peaks such as Everest, Cho Oyu, Makalu and Kangchenjunga as well as to some smaller border peaks. Data on expeditions to trekking peaks are included for early attempts, first ascents and major accidents.

h/t to Alex Cookson for sharing and cleaning this data!

This blog post by Alex Cookson explores the data in greater detail.

I don't want to underplay that there are some positives and some awful negatives for native Sherpa climbers. One-third of Everest deaths are Sherpa Climbers.

Also National Geographic has 5 Ways to help the Sherpas of Everest.

Get the data here

# Get the Data

# Read in with tidytuesdayR package 
# Install from CRAN via: install.packages("tidytuesdayR")
# This loads the readme and all the datasets for the week of interest

# Either ISO-8601 date or year/week works!

tuesdata <- tidytuesdayR::tt_load('2020-09-22')
tuesdata <- tidytuesdayR::tt_load(2020, week = 39)

climbers <- tuesdata$climbers

# Or read in the data manually

members <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv')
expeditions <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/expeditions.csv')
peaks <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/peaks.csv')

For other languages, see the additional files in this repository.

Data Dictionary

peaks.csv

variable class description
peak_id character Unique identifier for peak
peak_name character Common name of peak
peak_alternative_name character Alternative name of peak (for example, the "Mount Everest" is "Sagarmatha" in Nepalese)
height_metres double Height of peak in metres
climbing_status character Whether the peak has been climbed
first_ascent_year double Year of first successful ascent, if applicable
first_ascent_country character Country name(s) of expedition members part of the first ascent. Can have multiple values if members were from different countries. Country name is as of date of ascent (for example, "W Germany" for ascents before 1990).
first_ascent_expedition_id character Unique identifier for expedition. Can be linked to expeditions or members tables.

expeditions.csv

variable class description
expedition_id character Unique identifier for expedition. Can be linked to peaks or members tables.
peak_id character Unique identifier for peak. Can be linked to peaks table.
peak_name character Common name for peak
year double Year of expedition
season character Season of expedition (Spring, Summer, etc.)
basecamp_date date Date of expedition arrival at basecamp
highpoint_date date Date of expedition summiting the peak for the first time or, if peak wasn't reached, date of reaching its highpoint
termination_date date Date the expedition was terminated
termination_reason character Primary reason the expedition was terminated. There are two possibilities for a successful expeditions, depending on whether the main peak or a sub-peak was summitted.
highpoint_metres double Elevation highpoint of the expedition
members double Number of expedition members. For expeditions in Nepal, this is usually the number of foreigners listed on the expedition permit. For expeditions in China, this is usually the number of non-hired members.
member_deaths double Number of expeditions members who died
hired_staff double Number of hired staff who went above basecamp
hired_staff_deaths double Number of hired staff who died
oxygen_used logical Whether oxygen was used by at least one member of the expedition
trekking_agency character Name of the trekking agency

members.csv

variable class description
expedition_id character Unique identifier for expedition. Can be linked to peaks or members tables.
member_id character Unique identifier for the person. This is not consistent across expeditions, so you cannot use a single member_id to look up all expeditions a person was part of.
peak_id character Unique identifier for peak. Can be linked to peaks table.
peak_name character Common name for peak
year double Year of expedition
season character Season of expedition (Spring, Summer, etc.)
sex character Sex of the person
age double Age of the person. Depending on the best available data, this could be as of the summit date, the date of death, or the date of arrival at basecamp.
citizenship character Citizenship of the person
expedition_role character Role of the person on the expedition
hired logical Whether the person was hired by the expedition
highpoint_metres double Elevation highpoint of the person
success logical Whether the person was successful in summitting a main peak or sub-peak, depending on the goal of expedition
solo logical Whether the person attempted a solo ascent
oxygen_used logical Whether the person used oxygen
died logical Whether the person died
death_cause character Primary cause of death
death_height_metres double Height at which the person died
injured logical Whether the person was injured
injury_type character Primary cause of injury
injury_height_metres double Height at which the injury occurred

Cleaning Script (R Only, see files in repo for Python and R.)

# Libraries
library(tidyverse)
library(janitor)


# Peaks
peaks <- read_csv("./himalayan-expeditions/raw/peaks.csv") %>%
  transmute(
    peak_id = PEAKID,
    peak_name = PKNAME,
    peak_alternative_name = PKNAME2,
    height_metres = HEIGHTM,
    climbing_status = PSTATUS,
    first_ascent_year = PYEAR,
    first_ascent_country = PCOUNTRY,
    first_ascent_expedition_id = PEXPID
  ) %>%
  mutate(
    climbing_status = case_when(
      climbing_status == 0 ~ "Unknown",
      climbing_status == 1 ~ "Unclimbed",
      climbing_status == 2 ~ "Climbed"
    )
  )

# Create small dataframe of peak names to join to other dataframes
peak_names <- peaks %>%
  select(peak_id, peak_name)

# Expeditions
expeditions <- read_csv("./himalayan-expeditions/raw/exped.csv") %>%
  left_join(peak_names, by = c("PEAKID" = "peak_id")) %>%
  transmute(
    expedition_id = EXPID,
    peak_id = PEAKID,
    peak_name,
    year = YEAR,
    season = SEASON,
    basecamp_date = BCDATE,
    highpoint_date = SMTDATE,
    termination_date = TERMDATE,
    termination_reason = TERMREASON,
    # Highpoint of 0 is most likely missing value
    highpoint_metres = ifelse(HIGHPOINT == 0, NA, HIGHPOINT),
    members = TOTMEMBERS,
    member_deaths = MDEATHS,
    hired_staff = TOTHIRED,
    hired_staff_deaths = HDEATHS,
    oxygen_used = O2USED,
    trekking_agency = AGENCY
  ) %>%
  mutate(
    termination_reason = case_when(
      termination_reason == 0 ~ "Unknown",
      termination_reason == 1 ~ "Success (main peak)",
      termination_reason == 2 ~ "Success (subpeak)",
      termination_reason == 3 ~ "Success (claimed)",
      termination_reason == 4 ~ "Bad weather (storms, high winds)",
      termination_reason == 5 ~ "Bad conditions (deep snow, avalanching, falling ice, or rock)",
      termination_reason == 6 ~ "Accident (death or serious injury)",
      termination_reason == 7 ~ "Illness, AMS, exhaustion, or frostbite",
      termination_reason == 8 ~ "Lack (or loss) of supplies or equipment",
      termination_reason == 9 ~ "Lack of time",
      termination_reason == 10 ~ "Route technically too difficult, lack of experience, strength, or motivation",
      termination_reason == 11 ~ "Did not reach base camp",
      termination_reason == 12 ~ "Did not attempt climb",
      termination_reason == 13 ~ "Attempt rumoured",
      termination_reason == 14 ~ "Other"
    ),
    season = case_when(
      season == 0 ~ "Unknown",
      season == 1 ~ "Spring",
      season == 2 ~ "Summer",
      season == 3 ~ "Autumn",
      season == 4 ~ "Winter"
    )
  )

members <-
  read_csv("./himalayan-expeditions/raw/members.csv", guess_max = 100000) %>%
  left_join(peak_names, by = c("PEAKID" = "peak_id")) %>%
  transmute(
    expedition_id = EXPID,
    member_id = paste(EXPID, MEMBID, sep = "-"),
    peak_id = PEAKID,
    peak_name,
    year = MYEAR,
    season = MSEASON,
    sex = SEX,
    age = CALCAGE,
    citizenship = CITIZEN,
    expedition_role = STATUS,
    hired = HIRED,
    # Highpoint of 0 is most likely missing value
    highpoint_metres = ifelse(MPERHIGHPT == 0, NA, MPERHIGHPT),
    success = MSUCCESS,
    solo = MSOLO,
    oxygen_used = MO2USED,
    died = DEATH,
    death_cause = DEATHTYPE,
    # Height of 0 is most likely missing value
    death_height_metres = ifelse(DEATHHGTM == 0, NA, DEATHHGTM),
    injured = INJURY,
    injury_type = INJURYTYPE,
    # Height of 0 is most likely missing value
    injury_height_metres = ifelse(INJURYHGTM == 0, NA, INJURYHGTM)
  ) %>%
  mutate(
    season = case_when(
      season == 0 ~ "Unknown",
      season == 1 ~ "Spring",
      season == 2 ~ "Summer",
      season == 3 ~ "Autumn",
      season == 4 ~ "Winter"
    ),
    age = ifelse(age == 0, NA, age),
    death_cause = case_when(
      death_cause == 0 ~ "Unspecified",
      death_cause == 1 ~ "AMS",
      death_cause == 2 ~ "Exhaustion",
      death_cause == 3 ~ "Exposure / frostbite",
      death_cause == 4 ~ "Fall",
      death_cause == 5 ~ "Crevasse",
      death_cause == 6 ~ "Icefall collapse",
      death_cause == 7 ~ "Avalanche",
      death_cause == 8 ~ "Falling rock / ice",
      death_cause == 9 ~ "Disappearance (unexplained)",
      death_cause == 10 ~ "Illness (non-AMS)",
      death_cause == 11 ~ "Other",
      death_cause == 12 ~ "Unknown"
    ),
    injury_type = case_when(
      injury_type == 0 ~ "Unspecified",
      injury_type == 1 ~ "AMS",
      injury_type == 2 ~ "Exhaustion",
      injury_type == 3 ~ "Exposure / frostbite",
      injury_type == 4 ~ "Fall",
      injury_type == 5 ~ "Crevasse",
      injury_type == 6 ~ "Icefall collapse",
      injury_type == 7 ~ "Avalanche",
      injury_type == 8 ~ "Falling rock / ice",
      injury_type == 9 ~ "Disappearance (unexplained)",
      injury_type == 10 ~ "Illness (non-AMS)",
      injury_type == 11 ~ "Other",
      injury_type == 12 ~ "Unknown"
    ),
    death_cause = ifelse(died, death_cause, NA_character_),
    death_height_metres = ifelse(died, death_height_metres, NA),
    injury_type = ifelse(injured, injury_type, NA_character_),
    injury_height_metres = ifelse(injured, injury_height_metres, NA)
  )


### Write to CSV
write_csv(expeditions, "./himalayan-expeditions/expeditions.csv")
write_csv(members, "./himalayan-expeditions/members.csv")
write_csv(peaks, "./himalayan-expeditions/peaks.csv")

kyle's vision of how datadog's python client should look

kyle's datadog python vision/proposal not for production use See examples/comprehensive.py for a mostly working example of the proposed API. šŸ“ˆ 🐶 ā¤ļø

Kyle Verhoog 2 Nov 21, 2021
SummVis is an interactive visualization tool for text summarization.

SummVis is an interactive visualization tool for analyzing abstractive summarization model outputs and datasets.

Robustness Gym 246 Dec 08, 2022
A GUI for Pandas DataFrames

PandasGUI A GUI for analyzing Pandas DataFrames. Demo Installation Install latest release from PyPi: pip install pandasgui Install directly from Githu

Adam 2.8k Jan 03, 2023
Apache Superset is a Data Visualization and Data Exploration Platform

Apache Superset is a Data Visualization and Data Exploration Platform

The Apache Software Foundation 49.9k Jan 02, 2023
Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js

pivottablejs: the Python module Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js Installation pip install pivot

Nicolas Kruchten 512 Dec 26, 2022
A little logger for machine learning research

Blinker Blinker provides a fast dispatching system that allows any number of interested parties to subscribe to events, or "signals". Signal receivers

Reinforcement Learning Working Group 27 Dec 03, 2022
It's an application to calculate I from v and r. It can also plot a graph between V vs I.

Ohm-s-Law-Visualizer It's an application to calculate I from v and r using Ohm's Law. It can also plot a graph between V vs I. Story I'm doing my Unde

Sihab Sahariar 1 Nov 20, 2021
`charts.css.py` brings `charts.css` to Python. Online documentation and samples is available at the link below.

charts.css.py charts.css.py provides a python API to convert your 2-dimension data lists into html snippet, which will be rendered into charts by CSS,

Ray Luo 3 Sep 23, 2021
Epagneul is a tool to visualize and investigate windows event logs

epagneul Epagneul is a tool to visualize and investigate windows event logs. Dep

jurelou 190 Dec 13, 2022
A simple project on Data Visualization for CSCI-40 course.

Simple-Data-Visualization A simple project on Data Visualization for CSCI-40 course - the instructions can be found here SAT results in New York in 20

Hugo Matousek 8 Oct 27, 2021
metedraw is a project mainly for data visualization projects of Atmospheric Science, Marine Science, Environmental Science or other majors

It is mainly for data visualization projects of Atmospheric Science, Marine Science, Environmental Science or other majors.

Nephele 11 Jul 05, 2022
ecoglib: visualization and statistics for high density microecog signals

ecoglib: visualization and statistics for high density microecog signals This library contains high-level analysis tools for "topos" and "chronos" asp

1 Nov 17, 2021
Some examples with MatPlotLib library in Python

MatPlotLib Example Some examples with MatPlotLib library in Python Point: Run files only in project's directory About me Full name: Matin Ardestani Ag

Matin Ardestani 4 Mar 29, 2022
Dipto Chakrabarty 7 Sep 06, 2022
The interactive graphing library for Python (includes Plotly Express) :sparkles:

plotly.py Latest Release User forum PyPI Downloads License Data Science Workspaces Our recommended IDE for Plotly’s Python graphing library is Dash En

Plotly 12.7k Jan 05, 2023
This is Pygrr PolyArt, a program used for drawing custom Polygon models for your Pygrr project!

This is Pygrr PolyArt, a program used for drawing custom Polygon models for your Pygrr project!

Isaac 4 Dec 14, 2021
This GitHub Repository contains Data Analysis projects that I have completed so far! While most of th project are focused on Data Analysis, some of them are also put here to show off other skills that I have learned.

Welcome to my Data Analysis projects page! This GitHub Repository contains Data Analysis projects that I have completed so far! While most of th proje

Kyle Dini 1 Jan 31, 2022
Pglive - Pglive package adds support for thread-safe live plotting to pyqtgraph

Live pyqtgraph plot Pglive package adds support for thread-safe live plotting to

Martin Domaracký 15 Dec 10, 2022
Python histogram library - histograms as updateable, fully semantic objects with visualization tools. [P]ython [HYST]ograms.

physt P(i/y)thon h(i/y)stograms. Inspired (and based on) numpy.histogram, but designed for humans(TM) on steroids(TM). The goal is to unify different

Jan Pipek 120 Dec 08, 2022
Some method of processing point cloud

Point-Cloud Some method of processing point cloud inversion the completion pointcloud to incomplete point cloud Some model of encoding point cloud to

Tan 1 Nov 19, 2021