UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

Related tags

Deep Learningunimoco
Overview

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

This is the official PyTorch implementation for UniMoCo paper:

@article{dai2021unimoco,
  author  = {Zhigang Dai and Bolun Cai and Yugeng Lin and Junying Chen},
  title   = {UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning},
  journal = {arXiv preprint arXiv:2103.10773},
  year    = {2021},
}

In UniMoCo, we generalize MoCo to a unified contrastive learning framework, which supports unsupervised, semi-supervised and full-supervised visual representation learning. Based on MoCo, we maintain a label queue to store supervised labels. With the label queue, we can construct the multi-hot target on-the-fly, which represents postives and negatives of the given query. Besides, we propose a unified contrastive loss to deal with arbitrary number of positives and negatives. There is a comparison between MoCo and UniMoCo.

ImageNet Pre-training

Data Preparation

Install PyTorch and ImageNet dataset following the official PyTorch ImageNet training code.

Pre-training

To perform supervised contrastive learning of ResNet-50 model on ImageNet with 8 gpus for 800 epochs, run:

python main_unimoco.py \
  -a resnet50 \
  --lr 0.03 \
  --batch-size 256 \
  --epochs 800 \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  --mlp \
  --moco-t 0.2 \
  --aug-plus \
  --cos \
  [your imagenet-folder with train and val folders]

By default, the script performs full-supervised contrasitve learning.

Set --supervised-list to perform semi-supervised contrastive learning with different label ratios. For exmaple, 60% labels: --supervised-list ./label_info/60percent.txt.

This script uses all the default hyper-parameters as described in the MoCo v2.

Results

ImageNet Linear classification and COCO detection 1x schedule (R50-C4) results:

model ratios top-1 acc. top-5 acc. COCO AP
UniMoCo 0% 71.1 90.1 39.0
UniMoCo 10% 72.0 90.3 39.3
UniMoCo 30% 75.1 92.5 39.6
UniMoCo 60% 76.2 93.0 39.8
UniMoCo 100% 76.4 93.1 39.6

Check more details about linear classification and detection fine-tuning on MoCo.

Models are coming soon.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details.

Owner
dddzg
MSc student at SCUT
dddzg
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Official repository of my book: "Deep Learning with PyTorch Step-by-Step: A Beginner's Guide"

This is the official repository of my book "Deep Learning with PyTorch Step-by-Step". Here you will find one Jupyter notebook for every chapter in the book.

Daniel Voigt Godoy 340 Jan 01, 2023
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Simple (but Strong) Baselines for POMDPs

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specific

Tianwei V. Ni 172 Dec 29, 2022
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022
TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022