JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

Overview

JAX bindings to FINUFFT

This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library. Take a look at the FINUFFT docs for all the necessary definitions, conventions, and more information about the algorithms and their implementation. This package uses a low-level interface to directly expose the FINUFFT library to JAX's XLA backend, as well as implementing differentiation rules for the transforms.

Included features

This library is currently CPU-only, but GPU support is in the works using the cuFINUFFT library.

Type 1 and 2 transforms are supported in 1-, 2-, and 3-dimensions. All of these functions support forward, reverse, and higher-order differentiation, as well as batching using vmap.

Installation

For now, only a source build is supported.

For building, you should only need a recent version of Python (>3.6) and FFTW. At runtime, you'll need numpy, scipy, and jax. To set up such an environment, you can use conda (but you're welcome to use whatever workflow works for you!):

conda create -n jax-finufft -c conda-forge python=3.9 numpy scipy fftw
python -m pip install "jax[cpu]"

Then you can install from source using (don't forget the --recursive flag because FINUFFT is included as a submodule):

git clone --recursive https://github.com/dfm/jax-finufft
cd jax-finufft
python -m pip install .

Usage

This library provides two high-level functions (and these should be all that you generally need to interact with): nufft1 and nufft2 (for the two "types" of transforms). If you're already familiar with the Python interface to FINUFFT, please note that the function signatures here are different!

For example, here's how you can do a 1-dimensional type 1 transform:

import numpy as np
from jax_finufft import nufft1

M = 100000
N = 200000

x = 2 * np.pi * np.random.uniform(size=M)
c = np.random.standard_normal(size=M) + 1j * np.random.standard_normal(size=M)
f = nufft1(N, c, x, eps=1e-6, iflag=1)

Noting that the eps and iflag are optional, and that (for good reason, I promise!) the order of the positional arguments is reversed from the finufft Python package.

The syntax for a 2-, or 3-dimensional transform is:

f = nufft1((Nx, Ny), c, x, y)  # 2D
f = nufft1((Nx, Ny, Nz), c, x, y, z)  # 3D

The syntax for a type 2 transform is (also allowing optional iflag and eps parameters):

c = nufft2(f, x)  # 1D
c = nufft2(f, x, y)  # 2D
c = nufft2(f, x, y, z)  # 3D

Similar libraries

  • finufft: The "official" Python bindings to FINUFFT. A good choice if you're not already using JAX and if you don't need to differentiate through your transform.
  • mrphys/tensorflow-nufft: TensorFlow bindings for FINUFFT and cuFINUFFT.

License & attribution

This package, developed by Dan Foreman-Mackey is licensed under the Apache License, Version 2.0, with the following copyright:

Copyright 2021 The Simons Foundation, Inc.

If you use this software, please cite the primary references listed on the FINUFFT docs.

Comments
  • batching issue

    batching issue

    Hi,

    I get the following error when I try to batch nufft2 in Jax.

    process_primitive(self, primitive, tracers, params) 161 frame = self.get_frame(vals_in, dims_in) 162 batched_primitive = self.get_primitive_batcher(primitive, frame) --> 163 val_out, dim_out = batched_primitive(vals_in, dims_in, **params) 164 if primitive.multiple_results: 165 return map(partial(BatchTracer, self), val_out, dim_out)

    TypeError: batch() got an unexpected keyword argument 'output_shape'

    it seems like this is caused by

    nufft2(source, iflag, eps, *points) 57 58 return jnp.reshape( ---> 59 nufft2_p.bind(source, *points, output_shape=None, iflag=iflag, eps=eps), 60 expected_output_shape, 61 )

    Is there something I am doing wrong?

    Thanks for your help!

    opened by samaktbo 13
  • problem batching functions that have multiple arguments

    problem batching functions that have multiple arguments

    Hi,

    I am posting this here to give a clearer description of the problem that I am having.

    When I run the following snippet, I would like to have A be a 4 by 100 array whose I-th row is the output of linear_func(q, X[I,:]).

    import numpy as np
    import jax.numpy as jnp
    from jax import vmap
    from jax_finufft import nufft2
    
    rng = np.random.default_rng(seed=314)
    
    d=10 
    L_tilde = 10
    L = 100
    
    qr = rng.standard_normal((d, L_tilde+1))
    qi = rng.standard_normal((d, L_tilde+1))
    q = jnp.array(qr + 1j * qi)
    X = jnp.array(rng.uniform(low=0.0, high=1.0, size=(4, L)))
    
    def linear_func(q, x):
      v = jnp.ones(shape=(1, L_tilde))
    
      return jnp.matmul(v, nufft2(q, x, eps=1e-6, iflag=-1))
    
    batched = vmap(linear_func, in_axes=(None, 0), out_axes=0)
    
    A = batched(q, X)
    

    However, when I run the snippet I get the error posted below. You had said last time that there could be a work around for unbatched arguments but I could not figure it out.

    Here is the error:

    UnfilteredStackTrace                      Traceback (most recent call last)
    <ipython-input-25-c23bc4fa7eb4> in <module>()
    ----> 1 test = batched(q, X)
    
    30 frames
    UnfilteredStackTrace: TypeError: '<' not supported between instances of 'NoneType' and 'int'
    
    The stack trace below excludes JAX-internal frames.
    The preceding is the original exception that occurred, unmodified.
    
    --------------------
    
    The above exception was the direct cause of the following exception:
    
    TypeError                                 Traceback (most recent call last)
    /usr/local/lib/python3.7/dist-packages/jax_finufft/ops.py in <genexpr>(.0)
        281     else:
        282         mx = args[0].ndim - ndim - 1
    --> 283     assert all(a < mx for a in axes)
        284     assert all(a == axes[0] for a in axes[1:])
        285     return prim.bind(*args, **kwargs), axes[0]
    
    TypeError: '<' not supported between instances of 'NoneType' and 'int'
    

    I hope this gives a clearer picture than what I had last time. Thanks so much for your help!

    opened by samaktbo 5
  • Installation issue

    Installation issue

    I am having trouble installing jax-finuff even with the instructions on the home page. The installation fails with

    ERROR: Failed building wheel for jax-finufft Failed to build jax-finufft ERROR: Could not build wheels for jax-finufft, which is required to install pyproject.toml-based projects

    opened by samaktbo 5
  • Error when differentiating nufft1 with respect to points only

    Error when differentiating nufft1 with respect to points only

    Hi Dan,

    First, thank you for releasing this package, I was very glad to find it!

    I noted the error below when attempting to differentiate nufft1 with respect to points. I am very new to JAX so I could be mistaken, but I don't believe this is the intended behavior:

    from jax_finufft import nufft1, nufft2
    import numpy as np
    import jax.numpy as jnp
    from jax import grad
    M = 100000
    N = 200000
    
    x = 2 * np.pi * np.random.uniform(size=M)
    c = np.random.standard_normal(size=M) + 1j * np.random.standard_normal(size=M)
    
    def norm_nufft1(c,x):
        f = nufft1(N, c, x, eps=1e-6, iflag=1)
        return jnp.linalg.norm(f)
    
    def norm_nufft2(c,x):
        f = nufft2( c, x, eps=1e-6, iflag=1)
        return jnp.linalg.norm(f)
    
    grad(norm_nufft2,argnums =(1))(c,x) # Works fine
    grad(norm_nufft1,argnums =(0,))(c,x) # Works fine
    grad(norm_nufft1,argnums =(0,1))(c,x) # Works fine
    grad(norm_nufft1,argnums =(1))(c,x) # Throws error
    

    The error is below:

    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    /var/folders/dg/zzj57d7d1gs1k9l8sdfh043m0000gn/T/ipykernel_13430/3134504975.py in <module>
         22 grad(norm_nufft1,argnums =(0,))(c,x) # Works fine
         23 grad(norm_nufft1,argnums =(0,1))(c,x) # Works fine
    ---> 24 grad(norm_nufft1,argnums =(1))(c,x) # Throws error
         25 
         26 
    
        [... skipping hidden 10 frame]
    
    /var/folders/dg/zzj57d7d1gs1k9l8sdfh043m0000gn/T/ipykernel_13430/3134504975.py in norm_nufft1(c, x)
         11 
         12 def norm_nufft1(c,x):
    ---> 13     f = nufft1(N, c, x, eps=1e-6, iflag=1)
         14     return jnp.linalg.norm(f)
         15 
    
        [... skipping hidden 21 frame]
    
    ~/opt/anaconda3/envs/alphafold/lib/python3.8/site-packages/jax_finufft/ops.py in nufft1(output_shape, source, iflag, eps, *points)
         39 
         40     return jnp.reshape(
    ---> 41         nufft1_p.bind(source, *points, output_shape=output_shape, iflag=iflag, eps=eps),
         42         expected_output_shape,
         43     )
    
        [... skipping hidden 3 frame]
    
    ~/opt/anaconda3/envs/alphafold/lib/python3.8/site-packages/jax_finufft/ops.py in jvp(type_, prim, args, tangents, output_shape, iflag, eps)
        248 
        249         axis = -2 if type_ == 2 else -ndim - 1
    --> 250         output_tangent *= jnp.concatenate(jnp.broadcast_arrays(*scales), axis=axis)
        251 
        252         expand_shape = (
    
    ~/opt/anaconda3/envs/alphafold/lib/python3.8/site-packages/jax/_src/numpy/lax_numpy.py in concatenate(arrays, axis)
       3405   if hasattr(arrays[0], "concatenate"):
       3406     return arrays[0].concatenate(arrays[1:], axis)
    -> 3407   axis = _canonicalize_axis(axis, ndim(arrays[0]))
       3408   arrays = _promote_dtypes(*arrays)
       3409   # lax.concatenate can be slow to compile for wide concatenations, so form a
    
    ~/opt/anaconda3/envs/alphafold/lib/python3.8/site-packages/jax/_src/util.py in canonicalize_axis(axis, num_dims)
        277   axis = operator.index(axis)
        278   if not -num_dims <= axis < num_dims:
    --> 279     raise ValueError(f"axis {axis} is out of bounds for array of dimension {num_dims}")
        280   if axis < 0:
        281     axis = axis + num_dims
    
    ValueError: axis -2 is out of bounds for array of dimension 1
    
    bug 
    opened by ma-gilles 4
  • Speed up `vmap`s where none of the points are batched

    Speed up `vmap`s where none of the points are batched

    If none of the points are batched in a vmap, we should be able to get a faster computation by stacking the transforms into a single transform and then reshaping. It might be worth making the stacked axes into an explicit parameter rather than just trying to infer it, but that would take some work on the interface.

    opened by dfm 0
  • WIP: Adding support for non-batched dimensions in `vmap`

    WIP: Adding support for non-batched dimensions in `vmap`

    In most cases, we'll just need to broadcast all the inputs out to the right shapes (this shouldn't be too hard), but when none of the points get mapped, we can get a bit of a speed up by stacking the transforms. This starts to implement that logic, but it's not quite ready yet.

    opened by dfm 0
  • Find a publication venue

    Find a publication venue

    @lgarrison and I have been chatting about the possibility of writing a paper describing what we're doing here. Something like "Differentiable programming with NUFFTs" or "NUFFTs for machine learning applications" or something. This issue is here to remind me to look into possible venues for this.

    opened by dfm 5
  • Starting to add GPU support using cuFINUFFT

    Starting to add GPU support using cuFINUFFT

    So far I just have the CMake definitions to compile cuFINUFFT when nvcc is found, but I haven't started writing the boilerplate needed to loop it into XLA. Coming soon!

    Keeping @lgarrison in the loop.

    opened by dfm 10
  • Support Type 3?

    Support Type 3?

    There aren't currently any plans to support the Type 3 transform for a few reasons:

    • I'm not totally sure of the use cases,
    • The logic will probably be somewhat more complicated than the existing implementations, and
    • cuFINUFFT doesn't seem to support Type 3.

    Do we want to work around these issues?

    opened by dfm 0
  • Add support for handling errors

    Add support for handling errors

    Currently, if any of the finufft methods fail with a non-zero error we just ignore it and keep on trucking. How should we handle this? It looks like the JAX convention is currently to set everything to NaN when an op fails, since propagating errors up from XLA can be a bit of a pain.

    opened by dfm 0
  • Add GPU support

    Add GPU support

    Via cufinufft. We'll need to figure out how to get XLA's handling of CUDA streams to play nice with cufinufft (this is way above my pay grade). Some references:

    1. A simple example of how to write an XLA compatible CUDA kernel: https://github.com/dfm/extending-jax/blob/main/lib/kernels.cc.cu
    2. The source code for how JAX wraps cuBLAS: https://github.com/google/jax/blob/main/jaxlib/cublas_kernels.cc
    3. There is a tensorflow implementation that might have some useful context: https://github.com/mrphys/tensorflow-nufft/blob/master/tensorflow_nufft/cc/kernels/nufft_kernels.cu.cc

    Perhaps @lgarrison is interested :D

    opened by dfm 0
Releases(v0.0.3)
  • v0.0.3(Dec 10, 2021)

    What's Changed

    • Fix segfault when batching multiple transforms by @dfm in https://github.com/dfm/jax-finufft/pull/11
    • Generalize the behavior of vmap by @dfm in https://github.com/dfm/jax-finufft/pull/12

    Full Changelog: https://github.com/dfm/jax-finufft/compare/v0.0.2...v0.0.3

    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(Nov 12, 2021)

    • Faster differentiation using stacked transforms
    • Better error checking for vmap

    Full Changelog: https://github.com/dfm/jax-finufft/compare/v0.0.1...v0.0.2

    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Nov 8, 2021)

Owner
Dan Foreman-Mackey
Dan Foreman-Mackey
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023
git《USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation》(2020) GitHub: [fig2]

USD-Seg This project is an implement of paper USD-Seg:Learning Universal Shape Dictionary for Realtime Instance Segmentation, based on FCOS detector f

Ruolin Ye 80 Nov 28, 2022
A model that attempts to learn and benefit from data collected on card counting.

A model that attempts to learn and benefit from data collected on card counting. A decision tree like model is built to win more often than loose and increase the bet of the player appropriately to c

1 Dec 17, 2021
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022