Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Overview

Authors:

Code for sound field predictions in domains with Neumann and impedance boundaries. Used for generating results from the paper "Physics-informed neural networks for 1D sound field predictions with parameterized sources and impedance boundaries" by N. Borrel-Jensen, A. P. Engsig-Karup, and C. Jeong.

Run

Train

Run

python3 main_train.py --path_settings="path/to/script.json"

Scripts for setting up models with Neumann, frequency-independent and dependent boundaries can be found in scripts/settings (see JSON settings).

Evaluate

Run

python3 main_evaluate.py

The settings are

do_animations = do_side_by_side_plot = ">
id_dir = <unique id>
settings_filename = 'settings.json'
base_dir = "path/to/base/dir"

do_plots_for_paper = <bool>
do_animations = <bool>
do_side_by_side_plot = <bool>

The id_dir corresponds to the output directory generated after training, settings_filename is the name of the settings file used for training (located inside the id_dir directory), base_dir is the path to the base directory (see Input/output directory structure).

Evaluate model execution time

To evaluate the execution time of the surrogate model, run

python3 main_evaluate_timings.py --path_settings="path/to/script.json" --trained_model_tag="trained-model-dir"

The trained_model_tag is the directory with the trained model weights trained using the scripts located at the path given in path_settings.

Settings

Input/output directory structure

The input data should be located in a specific relative directory structure as (data used for the paper can be downloaded here)

base_path/
    trained_models/
        trained_model_tag/
            checkpoint
            cp.ckpt.data-00000-of-00001
            cp.ckpt.index
    training_data/
        freq_dep_1D_2000.00Hz_sigma0.2_c1_d0.02_srcs3.hdf5
        ...
        freq_indep_1D_2000.00Hz_sigma0.2_c1_xi5.83_srcs3.hdf5
        ...
        neumann_1D_2000.00Hz_sigma0.2_c1_srcs3.hdf5
        ...

The reference data are located inside the training_data/ directory generated, where the data for impedance boundaries are generated using our SEM simulator, and for Neumann boundaries, the Python script main_generate_analytical_data.py was used.

Output result data are located inside the results folder

base_path/
    results/
        id_folder/
            figs/
            models/
                LossType.PINN/
                    checkpoint
                    cp.ckpt.data-00000-of-00001
                    cp.ckpt.index
            settings.json

The settings.json file is identical to the settings file used for training indicated by the --path_settings argument. The directory LossType.PINN contains the trained model weights.

JSON settings

The script scripts/settings/neumann.json was used for training the Neumann model from the paper

{
    "id": "neumann_srcs3_sine_3_256_7sources_loss02",
    "base_dir": "../data/pinn",
    
    "c": 1,
    "c_phys": 343,
    "___COMMENT_fmax___": "2000Hz*c/343 = 5.8309 for c=1, =23.3236 for c=4",
    "fmax": 5.8309,

    "tmax": 4,
    "xmin": -1,
    "xmax": 1,
    "source_pos": [-0.3,-0.2,-0.1,0.0,0.1,0.2,0.3],
    
    "sigma0": 0.2,
    "rho": 1.2,
    "ppw": 5,

    "epochs": 25000,
    "stop_loss_value": 0.0002,
    
    "boundary_type": "NEUMANN",
    "data_filename": "neumann_1D_2000.00Hz_sigma0.2_c1_srcs7.hdf5",
    
    "batch_size": 512,
    "learning_rate": 0.0001,
    "optimizer": "adam",

    "__comment0__": "NN setting for the PDE",
    "activation": "sin",
    "num_layers": 3,
    "num_neurons": 256,

    "ic_points_distr": 0.25,
    "bc_points_distr": 0.45,

    "loss_penalties": {
        "pde":1,
        "ic":20,
        "bc":1
    },

    "verbose_out": false,
    "show_plots": false
}

The script scripts/settings/freq_indep.json was used for training the Neumann model from the paper

{
    "id": "freq_indep_sine_3_256_7sources_loss02",
    "base_dir": "../data/pinn",

    "c": 1,
    "c_phys": 343,
    "___COMMENT_fmax___": "2000Hz*c/343 = 5.8309 for c=1, =23.3236 for c=4",
    "fmax": 5.8309,

    "tmax": 4,
    "xmin": -1,
    "xmax": 1,
    "source_pos": [-0.3,-0.2,-0.1,0.0,0.1,0.2,0.3],
    
    "sigma0": 0.2,
    "rho": 1.2,
    "ppw": 5,

    "epochs": 25000,
    "stop_loss_value": 0.0002,
    
    "batch_size": 512,
    "learning_rate": 0.0001,
    "optimizer": "adam",

    "boundary_type": "IMPEDANCE_FREQ_INDEP",
    "data_filename": "freq_indep_1D_2000.00Hz_sigma0.2_c1_xi5.83_srcs7.hdf5",

    "__comment0__": "NN setting for the PDE",
    "activation": "sin",
    "num_layers": 3,
    "num_neurons": 256,

    "impedance_data": {
        "__comment1__": "xi is the acoustic impedance ONLY for freq. indep. boundaries",
        "xi": 5.83
    },

    "ic_points_distr": 0.25,
    "bc_points_distr": 0.45,
    
    "loss_penalties": {
        "pde":1,
        "ic":20,
        "bc":1
    },

    "verbose_out": false,
    "show_plots": false
}

The script scripts/settings/freq_dep.json was used for training the Neumann model from the paper

{
    "id": "freq_dep_sine_3_256_7sources_d01",
    "base_dir": "../data/pinn",

    "c": 1,
    "c_phys": 343,
    "___COMMENT_fmax___": "2000Hz*c/343 = 5.8309 for c=1, =23.3236 for c=4",
    "fmax": 5.8309,

    "tmax": 4,
    "xmin": -1,
    "xmax": 1,
    "source_pos": [-0.3,-0.2,-0.1,0.0,0.1,0.2,0.3],
    
    "sigma0": 0.2,
    "rho": 1.2,
    "ppw": 5,

    "epochs": 50000,
    "stop_loss_value": 0.0002,

    "do_transfer_learning": false,

    "boundary_type": "IMPEDANCE_FREQ_DEP",
    "data_filename": "freq_dep_1D_2000.00Hz_sigma0.2_c1_d0.10_srcs7.hdf5",
    
    "batch_size": 512,
    "learning_rate": 0.0001,
    "optimizer": "adam",

    "__comment0__": "NN setting for the PDE",
    "activation": "sin",
    "num_layers": 3,
    "num_neurons": 256,

    "__comment1__": "NN setting for the auxillary differential ODE",
    "activation_ade": "tanh",
    "num_layers_ade": 3,
    "num_neurons_ade": 20,

    "impedance_data": {
        "d": 0.1,
        "type": "IMPEDANCE_FREQ_DEP",
        "lambdas": [7.1109025021758407,205.64002739443146],
        "alpha": [6.1969460587749818],
        "beta": [-15.797795759219973],
        "Yinf": 0.76935257750377573,
        "A": [-7.7594660571346719,0.0096108036858666163],
        "B": [-0.016951521199665469],
        "C": [-2.4690553703530442]
      },

    "accumulator_factors": [10.26, 261.37, 45.88, 21.99],

    "ic_points_distr": 0.25,
    "bc_points_distr": 0.45,

    "loss_penalties": {
        "pde":1,
        "ic":20,
        "bc":1,
        "ade":[10,10,10,10]
    },

    "verbose_out": false,
    "show_plots": false
}

HPC (DTU)

The scripts for training the models on the GPULAB clusters at DTU are located at scripts/settings/run_*.sh.

VSCode

Launch scripts for VS Code are located inside .vscode and running the settings script local_train.json in debug mode is done selecting the Python: TRAIN scheme (open pinn-acoustics.code-workspace to enable the workspace).

License

See LICENSE

Owner
DTU Acoustic Technology Group
DTU Acoustic Technology Group
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
Open standard for machine learning interoperability

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides

Open Neural Network Exchange 13.9k Dec 30, 2022
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023