1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge

Overview

SIIM-COVID19-Detection

Alt text

Source code of the 1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge.

1.INSTALLATION

  • Ubuntu 18.04.5 LTS
  • CUDA 10.2
  • Python 3.7.9
  • python packages are detailed separately in requirements.txt
$ conda create -n envs python=3.7.9
$ conda activate envs
$ conda install -c conda-forge gdcm
$ pip install -r requirements.txt
$ pip install git+https://github.com/ildoonet/pytorch-gradual-warmup-lr.git

2.DATASET

2.1 SIIM COVID 19 DATASET

  • download competition dataset at link then extract to ./dataset/siim-covid19-detection
$ cd src/prepare
$ python dicom2image_siim.py
$ python kfold_split.py
$ prepare_siim_annotation.py                        # effdet and yolo format
$ cp -r ../../dataset/siim-covid19-detection/images ../../dataset/lung_crop/.
$ python prepare_siim_lung_crop_annotation.py

2.2 EXTERNAL DATASET

  • download pneumothorax dataset at link then extract to ./dataset/external_dataset/pneumothorax/dicoms
  • download pneumonia dataset at link then extract to ./dataset/external_dataset/rsna-pneumonia-detection-challenge/dicoms
  • download vinbigdata dataset at link then extract to ./dataset/external_dataset/vinbigdata/dicoms
  • download chest14 dataset at link then extract to ./dataset/external_dataset/chest14/images
  • download chexpert high-resolution dataset at link or then extract to ./dataset/external_dataset/chexpert/train
  • download padchest dataset at link or then extract to ./dataset/external_dataset/padchest/images
    most of the images in bimcv and ricord overlap with siim covid trainset and testset. To avoid data-leak when training, I didn't use them. You can use script
$ cd src/prepare
$ python dicom2image_pneumothorax.py
$ python dicom2image_pneumonia.py
$ python prepare_pneumonia_annotation.py      # effdet and yolo format
$ python dicom2image_vinbigdata.py
$ python prepare_vinbigdata.py
$ python refine_data.py                       # remove unused file in chexpert + chest14 + padchest dataset
$ python resize_padchest_pneumothorax.py

dataset structure should be ./dataset/dataset_structure.txt

3.SOLUTION SUMMARY

Alt text

4.TRAIN MODEL

4.1 Classification

4.1.1 Multi head classification + segmentation

  • Stage1
$ cd src/classification_aux
$ bash train_chexpert_chest14.sh              #Pretrain backbone on chexpert + chest14
$ bash train_rsnapneu.sh                      #Pretrain rsna_pneumonia
$ bash train_siim.sh                          #Train siim covid19
  • Stage2: Generate soft-label for classification head and mask for segmentation head.
    Output: soft-label in ./pseudo_csv/[source].csv and public test masks in ./prediction_mask/public_test/masks
$ bash generate_pseudo_label.sh [checkpoints_dir]
  • Stage3: Train model on trainset + public testset, load checkpoint from previous round
$ bash train_pseudo.sh [previous_checkpoints_dir] [new_checkpoints_dir]

Rounds of pseudo labeling (stage2) and retraining (stage3) were repeated until the score on public LB didn't improve.

  • For final submission
$ bash generate_pseudo_label.sh checkpoints_v3
$ bash train_pseudo.sh checkpoints_v3 checkpoints_v4
  • For evaluation
$ CUDA_VISIBLE_DEVICES=0 python evaluate.py --cfg configs/xxx.yaml --num_tta xxx

[email protected] 4 classes: negative, typical, indeterminate, atypical

SeR152-Unet EB5-Deeplab EB6-Linknet EB7-Unet++ Ensemble
w/o TTA/8TTA 0.575/0.584 0.583/0.592 0.580/0.587 0.589/0.595 0.595/0.598

8TTA: (orig, center-crop 80%)x(None, hflip, vflip, hflip & vflip). In final submission, I use 4.1.2 lung detector instead of center-crop 80%

4.1.2 Lung Detector-YoloV5

I annotated the train data(6334 images) using LabelImg and built a lung localizer. I noticed that increasing input image size improves the modeling performance and lung detector helps the model to reduce background noise.

$ cd src/detection_lung_yolov5
$ cd weights && bash download_coco_weights.sh && cd ..
$ bash train.sh
Fold0 Fold1 Fold2 Fold3 Fold4 Average
[email protected]:0.95 0.921 0.931 0.926 0.923 0.922 0.9246
[email protected] 0.997 0.998 0.997 0.996 0.998 0.9972

4.2 Opacity Detection

Rounds of pseudo labeling (stage2) and retraining (stage3) were repeated until the score on public LB didn't improve.

4.2.1 YoloV5x6 768

  • Stage1:
$ cd src/detection_yolov5
$ cd weights && bash download_coco_weights.sh && cd ..
$ bash train_rsnapneu.sh          #pretrain with rsna_pneumonia
$ bash train_siim.sh              #train with siim covid19 dataset, load rsna_pneumonia checkpoint
  • Stage2: Generate pseudo label (boxes)
$ bash generate_pseudo_label.sh

Jump to step 4.2.4 Ensembling + Pseudo labeling

  • Stage3:
$ bash warmup_ext_dataset.sh      #train with pseudo labeling (public-test, padchest, pneumothorax, vin) + rsna_pneumonia
$ bash train_final.sh             #train siim covid19 boxes, load warmup checkpoint

4.2.2 EfficientDet D7 768

  • Stage1:
$ cd src/detection_efffdet
$ bash train_rsnapneu.sh          #pretrain with rsna_pneumonia
$ bash train_siim.sh              #train with siim covid19 dataset, load rsna_pneumonia checkpoint
  • Stage2: Generate pseudo label (boxes)
$ bash generate_pseudo_label.sh

Jump to step 4.2.4 Ensembling + Pseudo labeling

  • Stage3:
$ bash warmup_ext_dataset.sh      #train with pseudo labeling (public-test, padchest, pneumothorax, vin) + rsna_pneumonia
$ bash train_final.sh             #train siim covid19, load warmup checkpoint

4.2.3 FasterRCNN FPN 768 & 1024

  • Stage1: train backbone of model with chexpert + chest14 -> train model with rsna pneummonia -> train model with siim, load rsna pneumonia checkpoint
$ cd src/detection_fasterrcnn
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python train_chexpert_chest14.py --steps 0 1 --cfg configs/resnet200d.yaml
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python train_chexpert_chest14.py --steps 0 1 --cfg configs/resnet101d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_rsnapneu.py --cfg configs/resnet200d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_rsnapneu.py --cfg configs/resnet101d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_siim.py --cfg configs/resnet200d.yaml --folds 0 1 2 3 4 --SEED 123
$ CUDA_VISIBLE_DEVICES=0 python train_siim.py --cfg configs/resnet101d.yaml --folds 0 1 2 3 4 --SEED 123

Note: Change SEED if training script runs into issue related to augmentation (boundingbox area=0) and comment/uncomment the following code if training script runs into issue related to resource limit

import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (8192, rlimit[1]))
  • Stage2: Generate pseudo label (boxes)
$ bash generate_pseudo_label.sh

Jump to step 4.2.4 Ensembling + Pseudo labeling

  • Stage3:
$ CUDA_VISIBLE_DEVICES=0 python warmup_ext_dataset.py --cfg configs/resnet200d.yaml
$ CUDA_VISIBLE_DEVICES=0 python warmup_ext_dataset.py --cfg configs/resnet101d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_final.py --cfg configs/resnet200d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_final.py --cfg configs/resnet101d.yaml

4.2.4 Ensembling + Pseudo labeling

Keep images that meet the conditions: negative prediction < 0.3 and maximum of (typical, indeterminate, atypical) predicion > 0.7. Then choose 2 boxes with the highest confidence as pseudo labels for each image.

Note: This step requires at least 128 GB of RAM

$ cd ./src/detection_make_pseudo
$ python make_pseudo.py
$ python make_annotation.py            

4.2.5 Detection Performance

YoloV5x6 768 EffdetD7 768 F-RCNN R200 768 F-RCNN R101 1024
[email protected] TTA 0.580 0.594 0.592 0.596

Final result: Public LB/Private LB: 0.658/0.635

5.FINAL KERNEL

siim-covid19-2021
demo notebook to visualize output of models

6.AWESOME RESOURCES

Pytorch
PyTorch Image Models
Segmentation models
EfficientDet
YoloV5
FasterRCNN FPN
Albumentations
Weighted boxes fusion

Owner
Nguyen Ba Dung
https://www.linkedin.com/in/dungnb1333/
Nguyen Ba Dung
OCR, Object Detection, Number Plate, Real Time

README.md PrePareded anaconda env requirements.txt clova AI → deep text recognition → trained weights (ex, .pth) wpod-net weights (ex, .h5 , .json) ht

Kaven Lee 7 Dec 06, 2022
Code for the paper "DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks" (ICCV '19)

DewarpNet This repository contains the codes for DewarpNet training. Recent Updates [May, 2020] Added evaluation images and an important note about Ma

<a href=[email protected]"> 354 Jan 01, 2023
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
An interactive interface for using OpenCV's GrabCut algorithm for image segmentation.

Interactive GrabCut An interactive interface for using OpenCV's GrabCut algorithm for image segmentation. Setup Install dependencies: pip install nump

Jason Y. Zhang 16 Oct 10, 2022
Course material for the Multi-agents and computer graphics course

TC2008B Course material for the Multi-agents and computer graphics course. Setup instructions Strongly recommend using a custom conda environment. Ins

16 Dec 13, 2022
Learn computer graphics by writing GPU shaders!

This repo contains a selection of projects designed to help you learn the basics of computer graphics. We'll be writing shaders to render interactive two-dimensional and three-dimensional scenes.

Eric Zhang 1.9k Jan 02, 2023
[python3.6] 运用tf实现自然场景文字检测,keras/pytorch实现ctpn+crnn+ctc实现不定长场景文字OCR识别

本文基于tensorflow、keras/pytorch实现对自然场景的文字检测及端到端的OCR中文文字识别 update20190706 为解决本项目中对数学公式预测的准确性,做了其他的改进和尝试,效果还不错,https://github.com/xiaofengShi/Image2Katex 希

xiaofeng 2.7k Dec 25, 2022
利用Paddle框架复现CRAFT

CRAFT-Paddle 利用Paddle框架复现CRAFT CRAFT 本项目基于paddlepaddle框架复现CRAFT,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: CRAFT: Character-Region Awarenes

QuanHao Guo 2 Mar 07, 2022
textspotter - An End-to-End TextSpotter with Explicit Alignment and Attention

An End-to-End TextSpotter with Explicit Alignment and Attention This is initially described in our CVPR 2018 paper. Getting Started Installation Clone

Tong He 323 Nov 10, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV.

DcoumentScanner A document scanner application for laptops/desktops developed using python, Tkinter and OpenCV. Directly install the .exe file to inst

Harsh Vardhan Singh 1 Oct 29, 2021
Generates a message from the infamous Jerma Impostor image

Generate your very own jerma sus imposter message. Modes: Default Mode: Only supports the characters " ", !, a, b, c, d, e, h, i, m, n, o, p, q, r, s,

Giorno420 1 Oct 27, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
This is a implementation of CRAFT OCR method

This is a implementation of CRAFT OCR method

Esaka 0 Nov 01, 2021
Resizing Canny Countour In Python

Resizing_Canny_Countour Install Visual Studio Code , https://code.visualstudio.com/download Select Python and install with terminal( pip install openc

Walter Ng 1 Nov 07, 2021
Usando o Amazon Textract como OCR para Extração de Dados no DynamoDB

dio-live-textract2 Repositório de código para o live coding do dia 05/10/2021 sobre extração de dados estruturados e gravação em banco de dados a part

hugoportela 0 Jan 19, 2022
一键翻译各类图片内文字

一键翻译各类图片内文字 针对群内、各个图站上大量不太可能会有人去翻译的图片设计,让我这种日语小白能够勉强看懂图片 主要支持日语,不过也能识别汉语和小写英文 支持简单的涂白和嵌字

574 Dec 28, 2022
Automatic Number Plate Recognition (ANPR) is a highly accurate system capable of reading vehicle number plates without human intervention

ANPR ANPR is therefore the underlying technology used to find a vehicle license/number plate and it, in turn, supplies this information to a next stag

Melih Emin Kılıçoğlu 1 Jan 09, 2022
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023
Textboxes : Image Text Detection Model : python package (tensorflow)

shinTB Abstract A python package for use Textboxes : Image Text Detection Model implemented by tensorflow, cv2 Textboxes Paper Review in Korean (My Bl

Jayne Shin (신재인) 91 Dec 15, 2022