Improving Calibration for Long-Tailed Recognition (CVPR2021)

Overview

MiSLAS

Improving Calibration for Long-Tailed Recognition

Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia

[arXiv] [slide] [BibTeX]


Introduction: This repository provides an implementation for the CVPR 2021 paper: "Improving Calibration for Long-Tailed Recognition" based on LDAM-DRW and Decoupling models. Our study shows, because of the extreme imbalanced composition ratio of each class, networks trained on long-tailed datasets are more miscalibrated and over-confident. MiSLAS is a simple, and efficient two-stage framework for long-tailed recognition, which greatly improves recognition accuracy and markedly relieves over-confidence simultaneously.

Installation

Requirements

  • Python 3.7
  • torchvision 0.4.0
  • Pytorch 1.2.0
  • yacs 0.1.8

Virtual Environment

conda create -n MiSLAS python==3.7
source activate MiSLAS

Install MiSLAS

git clone https://github.com/Jia-Research-Lab/MiSLAS.git
cd MiSLAS
pip install -r requirements.txt

Dataset Preparation

Change the data_path in config/*/*.yaml accordingly.

Training

Stage-1:

To train a model for Stage-1 with mixup, run:

(one GPU for CIFAR-10-LT & CIFAR-100-LT, four GPUs for ImageNet-LT, iNaturalist 2018, and Places-LT)

python train_stage1.py --cfg ./config/DATASETNAME/DATASETNAME_ARCH_stage1_mixup.yaml

DATASETNAME can be selected from cifar10, cifar100, imagenet, ina2018, and places.

ARCH can be resnet32 for cifar10/100, resnet50/101/152 for imagenet, resnet50 for ina2018, and resnet152 for places, respectively.

Stage-2:

To train a model for Stage-2 with one GPU (all the above datasets), run:

python train_stage2.py --cfg ./config/DATASETNAME/DATASETNAME_ARCH_stage2_mislas.yaml resume /path/to/checkpoint/stage1

The saved folder (including logs and checkpoints) is organized as follows.

MiSLAS
├── saved
│   ├── modelname_date
│   │   ├── ckps
│   │   │   ├── current.pth.tar
│   │   │   └── model_best.pth.tar
│   │   └── logs
│   │       └── modelname.txt
│   ...   

Evaluation

To evaluate a trained model, run:

python eval.py --cfg ./config/DATASETNAME/DATASETNAME_ARCH_stage1_mixup.yaml  resume /path/to/checkpoint/stage1
python eval.py --cfg ./config/DATASETNAME/DATASETNAME_ARCH_stage2_mislas.yaml resume /path/to/checkpoint/stage2

Results and Models

1) CIFAR-10-LT and CIFAR-100-LT

  • Stage-1 (mixup):
Dataset Top-1 Accuracy ECE (15 bins) Model
CIFAR-10-LT IF=10 87.6% 11.9% link
CIFAR-10-LT IF=50 78.1% 2.49% link
CIFAR-10-LT IF=100 72.8% 2.14% link
CIFAR-100-LT IF=10 59.1% 5.24% link
CIFAR-100-LT IF=50 45.4% 4.33% link
CIFAR-100-LT IF=100 39.5% 8.82% link
  • Stage-2 (MiSLAS):
Dataset Top-1 Accuracy ECE (15 bins) Model
CIFAR-10-LT IF=10 90.0% 1.20% link
CIFAR-10-LT IF=50 85.7% 2.01% link
CIFAR-10-LT IF=100 82.5% 3.66% link
CIFAR-100-LT IF=10 63.2% 1.73% link
CIFAR-100-LT IF=50 52.3% 2.47% link
CIFAR-100-LT IF=100 47.0% 4.83% link

Note: To obtain better performance, we highly recommend changing the weight decay 2e-4 to 5e-4 on CIFAR-LT.

2) Large-scale Datasets

  • Stage-1 (mixup):
Dataset Arch Top-1 Accuracy ECE (15 bins) Model
ImageNet-LT ResNet-50 45.5% 7.98% link
iNa'2018 ResNet-50 66.9% 5.37% link
Places-LT ResNet-152 29.4% 16.7% link
  • Stage-2 (MiSLAS):
Dataset Arch Top-1 Accuracy ECE (15 bins) Model
ImageNet-LT ResNet-50 52.7% 1.78% link
iNa'2018 ResNet-50 71.6% 7.67% link
Places-LT ResNet-152 40.4% 3.41% link

Citation

Please consider citing MiSLAS in your publications if it helps your research. :)

@inproceedings{zhong2021mislas,
    title={Improving Calibration for Long-Tailed Recognition},
    author={Zhisheng Zhong, Jiequan Cui, Shu Liu, and Jiaya Jia},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2021},
}

Contact

If you have any questions about our work, feel free to contact us through email (Zhisheng Zhong: [email protected]) or Github issues.

Owner
DV Lab
Deep Vision Lab
DV Lab
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
Data Consistency for Magnetic Resonance Imaging

Data Consistency for Magnetic Resonance Imaging Data Consistency (DC) is crucial for generalization in multi-modal MRI data and robustness in detectin

Dimitris Karkalousos 19 Dec 12, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021