A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

Related tags

Deep LearningPGL-SUM
Overview

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization

PyTorch Implementation of PGL-SUM

  • From "PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021.
  • Written by Evlampios Apostolidis, Georgios Balaouras, Vasileios Mezaris and Ioannis Patras.
  • This software can be used for training a deep learning architecture which estimates frames' importance after modeling their dependencies with the help of global and local multi-head attention mechanisms that integrate a positional encoding component. Training is performed in a supervised manner based on ground-truth data (human-generated video summaries). After being trained on a collection of videos, the PGL-SUM model is capable of producing representative summaries for unseen videos, according to a user-specified time-budget about the summary duration.

Main dependencies

Developed, checked and verified on an Ubuntu 20.04.3 PC with a NVIDIA TITAN Xp GPU. Main packages required:

Python PyTorch CUDA Version cuDNN Version TensorBoard TensorFlow NumPy H5py
3.8(.8) 1.7.1 11.0 8005 2.4.1 2.3.0 1.20.2 2.10.0

Data

Structured h5 files with the video features and annotations of the SumMe and TVSum datasets are available within the data folder. The GoogleNet features of the video frames were extracted by Ke Zhang and Wei-Lun Chao and the h5 files were obtained from Kaiyang Zhou. These files have the following structure:

/key
    /features                 2D-array with shape (n_steps, feature-dimension)
    /gtscore                  1D-array with shape (n_steps), stores ground truth importance score (used for training, e.g. regression loss)
    /user_summary             2D-array with shape (num_users, n_frames), each row is a binary vector (used for test)
    /change_points            2D-array with shape (num_segments, 2), each row stores indices of a segment
    /n_frame_per_seg          1D-array with shape (num_segments), indicates number of frames in each segment
    /n_frames                 number of frames in original video
    /picks                    positions of subsampled frames in original video
    /n_steps                  number of subsampled frames
    /gtsummary                1D-array with shape (n_steps), ground truth summary provided by user (used for training, e.g. maximum likelihood)
    /video_name (optional)    original video name, only available for SumMe dataset

Original videos and annotations for each dataset are also available in the dataset providers' webpages:

Training

To train the model using one of the aforementioned datasets and for a number of randomly created splits of the dataset (where in each split 80% of the data is used for training and 20% for testing) use the corresponding JSON file that is included in the data/splits directory. This file contains the 5 randomly-generated splits that were utilized in our experiments.

For training the model using a single split, run:

python model/main.py --split_index N --n_epochs E --batch_size B --video_type 'dataset_name'

where, N refers to the index of the used data split, E refers to the number of training epochs, B refers to the batch size, and dataset_name refers to the name of the used dataset.

Alternatively, to train the model for all 5 splits, use the run_summe_splits.sh and/or run_tvsum_splits.sh script and do the following:

chmod +x model/run_summe_splits.sh    # Makes the script executable.
chmod +x model/run_tvsum_splits.sh    # Makes the script executable.
./model/run_summe_splits.sh           # Runs the script. 
./model/run_tvsum_splits.sh           # Runs the script.  

Please note that after each training epoch the algorithm performs an evaluation step, using the trained model to compute the importance scores for the frames of each video of the test set. These scores are then used by the provided evaluation scripts to assess the overall performance of the model (in F-Score).

The progress of the training can be monitored via the TensorBoard platform and by:

  • opening a command line (cmd) and running: tensorboard --logdir=/path/to/log-directory --host=localhost
  • opening a browser and pasting the returned URL from cmd.

Configurations

Setup for the training process:

  • In data_loader.py, specify the path to the h5 file of the used dataset, and the path to the JSON file containing data about the utilized data splits.
  • In configs.py, define the directory where the analysis results will be saved to.

Arguments in configs.py:

Parameter name Description Default Value Options
--mode Mode for the configuration. 'train' 'train', 'test'
--verbose Print or not training messages. 'false' 'true', 'false'
--video_type Used dataset for training the model. 'SumMe' 'SumMe', 'TVSum'
--input_size Size of the input feature vectors. 1024 int > 0
--seed Chosen number for generating reproducible random numbers. 12345 None, int
--fusion Type of the used approach for feature fusion. 'add' None, 'add', 'mult', 'avg', 'max'
--n_segments Number of video segments; equal to the number of local attention mechanisms. 4 None, int ≥ 2
--pos_enc Type of the applied positional encoding. 'absolute' None, 'absolute', 'relative'
--heads Number of heads of the global attention mechanism. 8 int > 0
--n_epochs Number of training epochs. 200 int > 0
--batch_size Size of the training batch, 20 for 'SumMe' and 40 for 'TVSum'. 20 0 < int ≤ len(Dataset)
--clip Gradient norm clipping parameter. 5 float
--lr Value of the adopted learning rate. 5e-5 float
--l2_req Value of the regularization factor. 1e-5 float
--split_index Index of the utilized data split. 0 0 ≤ int ≤ 4
--init_type Weight initialization method. 'xavier' None, 'xavier', 'normal', 'kaiming', 'orthogonal'
--init_gain Scaling factor for the initialization methods. None None, float

Model Selection and Evaluation

The utilized model selection criterion relies on the post-processing of the calculated losses over the training epochs and enables the selection of a well-trained model by indicating the training epoch. To evaluate the trained models of the architecture and automatically select a well-trained model, define the dataset_path in compute_fscores.py and run evaluate_exp.sh. To run this file, specify:

  • base_path/exp$exp_num: the path to the folder where the analysis results are stored,
  • $dataset: the dataset being used, and
  • $eval_method: the used approach for computing the overall F-Score after comparing the generated summary with all the available user summaries (i.e., 'max' for SumMe and 'avg' for TVSum).
sh evaluation/evaluate_exp.sh $exp_num $dataset $eval_method

For further details about the adopted structure of directories in our implementation, please check line #6 and line #11 of evaluate_exp.sh.

Trained models and Inference

We have released the trained models for our main experiments -namely Table III and Table IV- of our ISM 2021 paper. The inference.py script, lets you evaluate the -reported- trained models, for our 5 randomly-created data splits. Firstly, download the trained models, with the following script:

sudo apt-get install unzip wget
wget "https://zenodo.org/record/5635735/files/pretrained_models.zip?download=1" -O pretrained_models.zip
unzip pretrained_models.zip -d inference
rm -f pretrained_models.zip

Then, specify the PATHs for the model, the split_file and the dataset in use. Finally, run the script with the following syntax

python inference/inference.py --table ID --dataset 'dataset_name'

where, ID refers to the id of the reported table, and dataset_name refers to the name of the used dataset.

License

Copyright (c) 2021, Evlampios Apostolidis, Georgios Balaouras, Vasileios Mezaris, Ioannis Patras / CERTH-ITI. All rights reserved. This code is provided for academic, non-commercial use only. Redistribution and use in source and binary forms, with or without modification, are permitted for academic non-commercial use provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation provided with the distribution.

This software is provided by the authors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the authors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

Acknowledgement

This work was supported by the EU Horizon 2020 programme under grant agreement H2020-832921 MIRROR, and by EPSRC under grant No. EP/R026424/1.
Owner
Evlampios Apostolidis
Evlampios Apostolidis
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
StyleSwin: Transformer-based GAN for High-resolution Image Generation

StyleSwin This repo is the official implementation of "StyleSwin: Transformer-based GAN for High-resolution Image Generation". By Bowen Zhang, Shuyang

Microsoft 349 Dec 28, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
[SIGGRAPH 2021 Asia] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning

DeepVecFont This is the official Pytorch implementation of the paper: Yizhi Wang and Zhouhui Lian. DeepVecFont: Synthesizing High-quality Vector Fonts

Yizhi Wang 146 Dec 18, 2022
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022