A two-stage U-Net for high-fidelity denoising of historical recordings

Overview

A two-stage U-Net for high-fidelity denoising of historical recordings

Official repository of the paper (not submitted yet):

E. Moliner and V. Välimäki,, "A two-stage U-Net for high-fidelity denosing of historical recordinds", in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Singapore, May, 2022

Abstract

Enhancing the sound quality of historical music recordings is a long-standing problem. This paper presents a novel denoising method based on a fully-convolutional deep neural network. A two-stage U-Net model architecture is designed to model and suppress the degradations with high fidelity. The method processes the time-frequency representation of audio, and is trained using realistic noisy data to jointly remove hiss, clicks, thumps, and other common additive disturbances from old analog discs. The proposed model outperforms previous methods in both objective and subjective metrics. The results of a formal blind listening test show that the method can denoise real gramophone recordings with an excellent quality. This study shows the importance of realistic training data and the power of deep learning in audio restoration.

Schema represention

Listen to our audio samples

Requirements

You will need at least python 3.7 and CUDA 10.1 if you want to use GPU. See requirements.txt for the required package versions.

To install the environment through anaconda, follow the instructions:

conda env update -f environment.yml
conda activate historical_denoiser

Denoising Recordings

Run the following commands to clone the repository and install the pretrained weights of the two-stage U-Net model:

git clone https://github.com/eloimoliner/denoising-historical-recordings.git
cd denoising-historical-recordings
wget https://github.com/eloimoliner/denoising-historical-recordings/releases/download/v0.0/checkpoint.zip
unzip checkpoint.zip /experiments/trained_model/

If the environment is installed correctly, you can denoise an audio file by running:

bash inference.sh "file name"

A ".wav" file with the denoised version, as well as the residual noise and the original signal in "mono", will be generated in the same directory as the input file.

Training

TODO

Comments
  • Will it work in Windows without CUDA?

    Will it work in Windows without CUDA?

    Hello, The readme says: "You will need at least python 3.7 and CUDA 10.1 if you want to use GPU."

    Unfortunately, my first attempt to run it in Windows without CUDA-supporting VGA failed. There is really no separate environment file for CPU-only? Is it possible to make it work without massive changes to the code?

    opened by vitacon 15
  • installation without conda

    installation without conda

    Hi,

    could you leave some hints about how to install this without conda? Your readme appears to be very much specified to this one case. Also it seems that you develop under linux so you use bash to execute. Maybe here a hint for win- users would be cool too.

    I am just trying to get this to run under windows and so far had no success. I will update if I get further. All the best!

    opened by GitHubGeniusOverlord 9
  • strange tensorflow version in requirements.txt

    strange tensorflow version in requirements.txt

    Hi,

    when running python -m pip install tensorflow==2.3.0 as indicated in your requirements file, I get

    ERROR: Could not find a version that satisfies the requirement tensorflow==2.3.0 (from versions: 2.5.0rc0, 2.5.0rc1, 2.5.0rc2, 2.5.0rc3, 2.5.0, 2.5.1, 2.5.2, 2.6.0rc0, 2.6.0rc1, 2.6.0rc2, 2.6.0, 2.6.1, 2.6.2, 2.7.0rc0, 2.7.0rc1, 2.7.0, 2.8.0rc0) ERROR: No matching distribution found for tensorflow==2.3.0

    It seems this version isn't even supported by pip anymore. Upgrade to 2.5.0?

    The same is true for scipy==1.4.1. Not sure about which version to take there.

    opened by GitHubGeniusOverlord 3
  • Update inference.sh

    Update inference.sh

    Small change to allow spaces in file names. Bash expands the variable $1 correctly even if it is in double quotes, python receives a single argument and not (if there are spaces) multiple arguments.

    opened by JorenSix 1
  • How to start training for denoising?

    How to start training for denoising?

    If I would like to do a denoising task, where I've clean signals (in the "clean" folder) and noisy signals (in the "noise" folder).

    opened by listener17 1
Releases(v0.0)
Owner
Eloi Moliner Juanpere
Doctoral candidate on audio signal processing at Aalto university.
Eloi Moliner Juanpere
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
PyTorch wrappers for using your model in audacity!

audacitorch This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for

Hugo Flores García 130 Dec 14, 2022
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023