Pytorch implementation of few-shot semantic image synthesis

Overview

Few-shot Semantic Image Synthesis Using StyleGAN Prior


Our method can synthesize photorealistic images from dense or sparse semantic annotations using a few training pairs and a pre-trained StyleGAN.

Prerequisites

  1. Python3
  2. PyTorch

Preparation

Download and decompress the file containing StyleGAN pre-trained models and put the "pretrained_models" directory in the parent directory.

Inference with our pre-trained models

  1. Download and decompress the file containing our pretrained encoders and put the "results" directory in the parent directory.
  2. For example, our results for celebaMaskHQ in a one-shot setting can be generated as follows:
python scripts/inference.py --exp_dir=results/celebaMaskHQ_oneshot --checkpoint_path=results/celebaMaskHQ_oneshot/checkpoints/iteration_100000.pt --data_path=./data/CelebAMask-HQ/test/labels/ --couple_outputs --latent_mask=8,9,10,11,12,13,14,15,16,17

Inference results are generated in results/celebaMaskHQ_oneshot. If you use other datasets, please specify --exp_dir, --checkpoint_path, and --data_path appropriately.

Training

For each dataset, you can train an encoder as follows:

  • CelebAMask
python scripts/train.py --exp_dir=[result_dir] --dataset_type=celebs_seg_to_face --stylegan_weights pretrained_models/stylegan2-ffhq-config-f.pt --start_from_latent_avg --label_nc 19 --input_nc 19
  • CelebALandmark
python scripts/train.py --exp_dir=[result_dir] --dataset_type=celebs_landmark_to_face --stylegan_weights pretrained_models/stylegan2-ffhq-config-f.pt --start_from_latent_avg --label_nc 71 --input_nc 71 --sparse_labeling


Intermediate training outputs with the StyleGAN pre-trained with the CelebA-HQ dataset. It can be seen that the layouts of the bottom-row images reconstructed from the middle-row pseudo semantic masks gradually become close to those of the top-row StyleGAN samples as the training iterations increase.

  • LSUN church
python scripts/train.py --exp_dir=[result_dir] --dataset_type=lsunchurch_seg_to_img --stylegan_weights pretrained_models/stylegan2-church-config-f.pt --style_num 14 --start_from_latent_avg --label_nc 151 --input_nc 151
  • LSUN car
python scripts/train.py --exp_dir=[result_dir] --dataset_type=lsuncar_seg_to_img --stylegan_weights pretrained_models/stylegan2-car-config-f.pt --style_num 16 --start_from_latent_avg --label_nc 5 --input_nc 5
  • LSUN cat
python scripts/train.py --exp_dir=[result_dir] --dataset_type=lsuncat_scribble_to_img --stylegan_weights pretrained_models/stylegan2-cat-config-f.pt --style_num 14 --start_from_latent_avg --label_nc 9 --input_nc 9 --sparse_labeling
  • Ukiyo-e
python scripts/train.py --exp_dir=[result_dir] --dataset_type=ukiyo-e_scribble_to_img --stylegan_weights pretrained_models/ukiyoe-256-slim-diffAug-002789.pt --style_num 14 --channel_multiplier 1 --start_from_latent_avg --label_nc 8 --input_nc 8 --sparse_labeling
  • Anime
python scripts/train.py --exp_dir=[result_dir] --dataset_type=anime_cross_to_img --stylegan_weights pretrained_models/2020-01-11-skylion-stylegan2-animeportraits-networksnapshot-024664.pt --style_num 16 --start_from_latent_avg --label_nc 2 --input_nc 2 --sparse_labeling

Using StyleGAN samples as few-shot training data

  1. Run the following script:
python scripts/generate_stylegan_samples.py --exp_dir=[result_dir] --stylegan_weights ./pretrained_models/stylegan2-ffhq-config-f.pt --style_num 18 --channel_multiplier 2

Then a StyleGAN image (*.png) and a corresponding latent code (*.pt) are obtained in [result_dir]/data/images and [result_dir]/checkpoints.

  1. Manually annotate the generated image in [result_dir]/data/images and save the annotated mask in [result_dir]/data/labels.

  2. Edit ./config/data_configs.py and ./config/paths_config.py appropriately to use the annotated pairs as a training set.

  3. Run a training command above with appropriate options.

Citation

Please cite our paper if you find the code useful:

@article{endo2021fewshotsmis,
  title = {Few-shot Semantic Image Synthesis Using StyleGAN Prior},
  author = {Yuki Endo and Yoshihiro Kanamori},
  journal   = {CoRR},
  volume    = {abs/2103.14877},
  year      = {2021}
}

Acknowledgements

This code heavily borrows from the pixel2style2pixel repository.

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
BrainGNN - A deep learning model for data-driven discovery of functional connectivity

A deep learning model for data-driven discovery of functional connectivity https://doi.org/10.3390/a14030075 Usman Mahmood, Zengin Fu, Vince D. Calhou

Usman Mahmood 3 Aug 28, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022