PiRank: Learning to Rank via Differentiable Sorting

Related tags

Deep Learningpirank
Overview

PiRank: Learning to Rank via Differentiable Sorting

This repository provides a reference implementation for learning PiRank-based models as described in the paper:

PiRank: Learning to Rank via Differentiable Sorting
Robin Swezey, Aditya Grover, Bruno Charron and Stefano Ermon.
Paper: https://arxiv.org/abs/2012.06731

Requirements

The codebase is implemented in Python 3.7. To install the necessary base requirements, run the following commands:

pip install -r requirements.txt

If you intend to use a GPU, modify requirements.txt to install tensorflow-gpu instead of tensorflow.

You will also need the NeuralSort implementation available here. Make sure it is added to your PYTHONPATH.

Datasets

PiRank was tested on the two following datasets:

Additionally, the code is expected to work with any dataset stored in the standard LibSVM format used for LTR experiments.

Scripts

There are two scripts for the code:

  • pirank_simple.py implements a simple depth-1 PiRank loss (d=1). It is used in the experiments of sections 4.1 (benchmark evaluation on MSLR-WEB30K and Yahoo! C14 datasets), 4.2.1 (effect of temperature parameter), and 4.2.2 (effect of training list size).

  • pirank_deep.py implements the deeper PiRank losses (d>=1). It is used for the experiments of section 4.2.3 and comes with a convenient synthetic data generator as well as more tuning options.

Options

Options are handled by Sacred (see Examples section below).

pirank_simple.py and pirank_deep.py

PiRank-related:

Parameter Default Value Description
loss_fn pirank_simple_loss The loss function to use (either a TFR RankingLossKey, or loss function from the script)
ste False Whether to use the Straight-Through Estimator
ndcg_k 15 [email protected] cutoff when using NS-NDCG loss

NeuralSort-related:

Parameter Default Value Description
tau 5 Temperature
taustar 1e-10 Temperature for trues and straight-through estimation.

TensorFlow-Ranking and architecture-related:

Parameter Default Value Description
hidden_layers "256,tanh,128,tanh,64,tanh" Hidden layers for an example-wise feedforward network in the format size,activation,...,size,activation
num_features 136 Number of features per document. The default value is for MSLR and depends on the dataset (e.g. for Yahoo!, please change to 700).
list_size 100 List size used for training
group_size 1 Group size used in score function

Training-related:

Parameter Default Value Description
train_path "/data/MSLR-WEB30K/Fold*/train.txt" Input file path used for training
vali_path "/data/MSLR-WEB30K/Fold*/vali.txt" Input file path used for validation
test_path "/data/MSLR-WEB30K/Fold*/test.txt" Input file path used for testing
model_dir None Output directory for models
num_epochs 200 Number of epochs to train, set 0 to just test
lr 1e-4 initial learning rate
batch_size 32 The batch size for training
num_train_steps None Number of steps for training
num_vali_steps None Number of steps for validation
num_test_steps None Number of steps for testing
learning_rate 0.01 Learning rate for optimizer
dropout_rate 0.5 The dropout rate before output layer
optimizer Adagrad The optimizer for gradient descent

Sacred:

In addition, you can use regular parameters from Sacred (such as -m for logging the experiment to MongoDB).

pirank_deep.py only

Parameter Default Value Description
merge_block_size None Block size used if merging, None if not merging
top_k None Use a different Top-k for merging than final [email protected] for loss
straight_backprop False Backpropagate on scores only through NS operator
full_loss False Use the complete loss at the end of merge
tau_scheme None Which scheme to use for temperature going deeper (default: constant)
data_generator None Data generator (default: TFR\s libsvm); use this for synthetic generation
num_queries 30000 Number of queries for synthetic data generator
num_query_features 10 Number of columns used as factors for each query by synthetic data generator
actual_list_size None Size of actual list per query in synthetic data generation
train_path "/data/MSLR-WEB30K/Fold*/train.txt" Input file path used for training; alternatively value of seed if using data generator
vali_path "/data/MSLR-WEB30K/Fold*/vali.txt" Input file path used for validation; alternatively value of seed if using data generator
test_path "/data/MSLR-WEB30K/Fold*/test.txt" Input file path used for testing; alternatively value of seed if using data generator
with_opa True Include pairwise metric OPA

Examples

Run the benchmark experiment of section 4.1 with PiRank simple loss on MSLR-WEB30K

cd pirank
python3 pirank_simple.py with loss_fn=pirank_simple_loss \
    ndcg_k=10 \
    tau=5 \
    list_size=80 \
    hidden_layers=256,relu,256,relu,128,relu,64,relu \
    train_path=/data/MSLR-WEB30K/Fold1/train.txt \
    vali_path=/data/MSLR-WEB30K/Fold1/vali.txt \
    test_path=/data/MSLR-WEB30K/Fold1/test.txt \
    num_features=136 \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16 \
    model_dir=/tmp/model

Run the benchmark experiment of section 4.1 with PiRank simple loss on Yahoo! C14

cd pirank
python3 pirank_simple.py with loss_fn=pirank_simple_loss \
    ndcg_k=10 \
    tau=5 \
    list_size=80 \
    hidden_layers=256,relu,256,relu,128,relu,64,relu \
    train_path=/data/YAHOO/set1.train.txt \
    vali_path=/data/YAHOO/set1.valid.txt \
    test_path=/data/YAHOO/set1.test.txt \
    num_features=700 \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16 \
    model_dir=/tmp/model

Run the benchmark experiment of section 4.1 with classic LambdaRank on MSLR-WEB30K

cd pirank
python3 pirank_simple.py with loss_fn=lambda_rank_loss \
    ndcg_k=10 \
    tau=5 \
    list_size=80 \
    hidden_layers=256,relu,256,relu,128,relu,64,relu \
    train_path=/data/MSLR-WEB30K/Fold1/train.txt \
    vali_path=/data/MSLR-WEB30K/Fold1/vali.txt \
    test_path=/data/MSLR-WEB30K/Fold1/test.txt \
    num_features=136 \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16 \
    model_dir=/tmp/model

Run the scaling ablation experiment of section 4.2.3 using synthetic data generation (d=2)

cd pirank
python3 pirank_deep.py with loss_fn=pirank_deep_loss \
    ndcg_k=10 \
    ste=True \
    merge_block_size=100 \
    tau=5 \
    taustar=1e-10 \
    tau_scheme=square \
    data_generator=synthetic_data_generator \
    actual_list_size=1000 \
    list_size=1000 \
    vali_list_size=1000 \
    test_list_size=1000 \
    full_loss=False \
    train_path=0 \
    vali_path=1 \
    test_path=2 \
    num_queries=1000 \
    num_features=25 \
    num_query_features=5 \
    hidden_layers=256,relu,256,relu,128,relu,128,relu,64,relu,64,relu \
    optimizer=Adam \
    learning_rate=0.00001 \
    num_epochs=100 \
    batch_size=16

Help

If you need help, reach out to Robin Swezey or raise an issue.

Citing

If you find PiRank useful in your research, please consider citing the following paper:

@inproceedings{
swezey2020pirank,
title={PiRank: Learning to Rank via Differentiable Sorting},
author={Robin Swezey and Aditya Grover and Bruno Charron and Stefano Ermon},
year={2020},
url={},
}

Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21)

AdvRush Official Code for AdvRush: Searching for Adversarially Robust Neural Architectures (ICCV '21) Environmental Set-up Python == 3.6.12, PyTorch =

11 Dec 10, 2022
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

EDSR modelling A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repositor

Samuel Jackson 7 Nov 03, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks This repository contains a TensorFlow implementation of "

Jingwei Zheng 5 Jan 08, 2023
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022