Utilities to bridge Canvas-generated course rosters with GitLab's API.

Overview

gitlab-canvas-utils

A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository creation, all the way to cloning repos and adding users to a shared resources repository.

Installation

To install the included scripts, run:

./install --all

To install the scripts and man pages for development, run:

./install --symlink

To uninstall the scripts, run:

$ ./uninstall.sh

Utilities

There are currently 7 scripts/utilities:

  1. addtorepos - adds students to a set of specified repositories as reporters
  2. checkout - checks out cloned student repositories to commit IDs submitted for a specific assignment.
  3. clone - clones student repositories.
  4. createrepos - creates course GitLab course and student repos.
  5. pushfiles - adds files to cloned student repositories, pushing the changes.
  6. rmfiles - removes files from cloned student repositories, pushing the changes.
  7. roster - scrapes Canvas for a CSV of the student roster.

Read the supplied man pages for more information on each of these utilities.

Creating GitLab course, student repos, and adding students to resources repository
$ roster | createrepos | addtoresources
Cloning all student repos and checking them out to submitted commit IDs
$ roster | clone | checkout --asgn=5

Paths

To get (arguably) the full experience of these utilities, you should add the installed scripts directory to your $PATH and the installed man page directory to your $MANPATH.

To add the scripts directory:

$ export PATH=$PATH:$HOME/.config/gcu/scripts

To add the man directory (the double colon is intentional):

$ export MANPATH=::$MANPATH:$HOME/.config/gcu/man

You may want to add these exports to your shell configuration files.

Course Configuration

After running the installation script, a configuration file will need to be modifed for the specific course that these utilities will be used for. To modify the configuration file, run:

vi $HOME/.config/gcu/config.toml

A template configuration file will be supplied during installation if one does not already exist. The configuration file should have this basic structure:

canvas_url = "https://canvas.ucsc.edu"
canvas_course_id = 42878
canvas_token = "<your token here>"
course = "cse13s"
quarter = "spring"
year = "2021"
gitlab_server = "https://git.ucsc.edu"
gitlab_token = "<your token here>"
gitlab_role = "developer"
template_repo = "https://git.ucsc.edu/euchou/cse13s-template.git"
  • canvas_url: the Canvas server that your course is hosted on.
  • canvas_course_id: the Canvas course ID for your course. The one in the template is for the Spring 2021 offering of CSE 13S. You can find any course ID directly from the course page's url on Canvas.
  • canvas_token: your Canvas access token as a string. To generate a Canvas token, head to your account settings on Canvas. There will be a button to create a new access token under the section titled Approved Integrations. Note that you must have at least TA-level privilege under the course you want to use these scripts with.
  • course, quarter, and year should reflect, as one can imagine, the course, quarter, and year in which the course is held.
  • gitlab_server: the GitLab server that you want to create the course group and student repos on.
  • gitlab_token: your GitLab token as a string. Your token should have API-level privilege.
  • gitlab_role: the default role of students for their individual or shared repositories.
  • template_repo: the template repository to import and use as a base for student repositories. Note that this template repository will need to be publically visible.

Contributing

If you are interested in contributing to these scripts, send an email to [email protected]. Questions are welcomed as well.

Owner
Eugene Chou
Eugene Chou
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022