Utilities to bridge Canvas-generated course rosters with GitLab's API.

Overview

gitlab-canvas-utils

A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository creation, all the way to cloning repos and adding users to a shared resources repository.

Installation

To install the included scripts, run:

./install --all

To install the scripts and man pages for development, run:

./install --symlink

To uninstall the scripts, run:

$ ./uninstall.sh

Utilities

There are currently 7 scripts/utilities:

  1. addtorepos - adds students to a set of specified repositories as reporters
  2. checkout - checks out cloned student repositories to commit IDs submitted for a specific assignment.
  3. clone - clones student repositories.
  4. createrepos - creates course GitLab course and student repos.
  5. pushfiles - adds files to cloned student repositories, pushing the changes.
  6. rmfiles - removes files from cloned student repositories, pushing the changes.
  7. roster - scrapes Canvas for a CSV of the student roster.

Read the supplied man pages for more information on each of these utilities.

Creating GitLab course, student repos, and adding students to resources repository
$ roster | createrepos | addtoresources
Cloning all student repos and checking them out to submitted commit IDs
$ roster | clone | checkout --asgn=5

Paths

To get (arguably) the full experience of these utilities, you should add the installed scripts directory to your $PATH and the installed man page directory to your $MANPATH.

To add the scripts directory:

$ export PATH=$PATH:$HOME/.config/gcu/scripts

To add the man directory (the double colon is intentional):

$ export MANPATH=::$MANPATH:$HOME/.config/gcu/man

You may want to add these exports to your shell configuration files.

Course Configuration

After running the installation script, a configuration file will need to be modifed for the specific course that these utilities will be used for. To modify the configuration file, run:

vi $HOME/.config/gcu/config.toml

A template configuration file will be supplied during installation if one does not already exist. The configuration file should have this basic structure:

canvas_url = "https://canvas.ucsc.edu"
canvas_course_id = 42878
canvas_token = "<your token here>"
course = "cse13s"
quarter = "spring"
year = "2021"
gitlab_server = "https://git.ucsc.edu"
gitlab_token = "<your token here>"
gitlab_role = "developer"
template_repo = "https://git.ucsc.edu/euchou/cse13s-template.git"
  • canvas_url: the Canvas server that your course is hosted on.
  • canvas_course_id: the Canvas course ID for your course. The one in the template is for the Spring 2021 offering of CSE 13S. You can find any course ID directly from the course page's url on Canvas.
  • canvas_token: your Canvas access token as a string. To generate a Canvas token, head to your account settings on Canvas. There will be a button to create a new access token under the section titled Approved Integrations. Note that you must have at least TA-level privilege under the course you want to use these scripts with.
  • course, quarter, and year should reflect, as one can imagine, the course, quarter, and year in which the course is held.
  • gitlab_server: the GitLab server that you want to create the course group and student repos on.
  • gitlab_token: your GitLab token as a string. Your token should have API-level privilege.
  • gitlab_role: the default role of students for their individual or shared repositories.
  • template_repo: the template repository to import and use as a base for student repositories. Note that this template repository will need to be publically visible.

Contributing

If you are interested in contributing to these scripts, send an email to [email protected]. Questions are welcomed as well.

Owner
Eugene Chou
Eugene Chou
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022