NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

Overview

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

This repository provides our implementation of the CVPR 2021 paper NeuroMorph. Our algorithm produces in one go, i.e., in a single feed forward pass, a smooth interpolation and point-to-point correspondences between two input 3D shapes. It is learned in a self-supervised manner from an unlabelled collection of deformable and heterogeneous shapes.

If you use our work, please cite:

@inproceedings{eisenberger2021neuromorph, 
  title={NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go}, 
  author={Eisenberger, Marvin and Novotny, David and Kerchenbaum, Gael and Labatut, Patrick and Neverova, Natalia and Cremers, Daniel and Vedaldi, Andrea}, 
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, 
  pages={7473--7483}, 
  year={2021}
}

Requirements

The code was tested on Python 3.8.10 with the PyTorch version 1.9.1 and CUDA 10.2. The code also requires the pytorch-geometric library (installation instructions) and matplotlib. Finally, MATLAB with the Statistics and Machine Learning Toolbox is used to pre-process ceratin datasets (we tested MATLAB versions 2019b and 2021b). The code should run on Linux, macOS and Windows.

Installing NeuroMorph

Using Anaconda, you can install the required dependencies as follows:

conda create -n neuromorph python=3.8
conda activate neuromorph
conda install pytorch cudatoolkit=10.2 -c pytorch
conda install matplotlib
conda install pyg -c pyg -c conda-forge

Running NeuroMorph

In order to run NeuroMorph:

  • Specify the location of datasets on your device under data_folder_ in param.py.
  • To use your own data, create a new dataset in data/data.py.
  • To train FAUST remeshed, run the main script main_train.py. Modify the script as needed to train on different data.

For a more detailed tutorial, see the next section.

Reproducing the experiments

We show below how to reproduce the experiments on the FAUST remeshed data.

Data download

You can download experimental mesh data from here from the authors of the Deep Geometric Functional Maps. Download the FAUST_r.zip file from this site, unzip it, and move the content of the directory to /data/mesh/FAUST_r .

Data preprocessing

Meshes must be subsampled and remeshed (for data augmentation during training) and geodesic distance matrices must be computed before the learning code runs. For this, we use the data_preprocessing/preprocess_dataset.m MATLAB scripts (we tested V2019b and V2021b).

Start MATLAB and do the following:

cd 
   
    /data_preprocessing
   
preprocess_dataset("../data/meshes/FAUST_r/", ".off")

The result should be a list of MATLAB mesh files in a mat subfolder (e.g., data/meshes/FAUST_r/mat ), plus additional data.

Model training

If you stored the data in the directory given above, you can train the model by running:

mkdir -p data/{checkpoint,out}
python main_train.py

The trained models will be saved in a series of checkpoints at /data/out/ . Otherwise, edit param.py to change the paths.

Model testing

Upon completion, evaluate the trained model with main_test.py . Specify the checkpoint folder name by running:

python main_test.py <TIME_STAMP_FAUST>

Here is any of the directories saved in /data/out/ . This automatically saves correspondences and interpolations on the FAUST remeshed test set to /data/out/ . For reference, on FAUST you should expect a validation error around 0.25 after 400 epochs.

Contributing

See the CONTRIBUTING file for how to help out.

License

NeuroMorph is MIT licensed, as described in the LICENSE file. NeuroMorph includes a few files from other open source projects, as further detailed in the same LICENSE file.

Owner
Meta Research
Meta Research
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
Python scripts form performing stereo depth estimation using the CoEx model in ONNX.

ONNX-CoEx-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the CoEx model in ONNX. Stereo depth estimation on the

Ibai Gorordo 8 Dec 29, 2022
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
A Dataset for Direct Quotation Extraction and Attribution in News Articles.

DirectQuote - A Dataset for Direct Quotation Extraction and Attribution in News Articles DirectQuote is a corpus containing 19,760 paragraphs and 10,3

THUNLP-MT 9 Sep 23, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
An open source implementation of CLIP.

OpenCLIP Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training). The goal of this repository is to enable

2.7k Dec 31, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022