NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

Overview

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

This repository provides our implementation of the CVPR 2021 paper NeuroMorph. Our algorithm produces in one go, i.e., in a single feed forward pass, a smooth interpolation and point-to-point correspondences between two input 3D shapes. It is learned in a self-supervised manner from an unlabelled collection of deformable and heterogeneous shapes.

If you use our work, please cite:

@inproceedings{eisenberger2021neuromorph, 
  title={NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go}, 
  author={Eisenberger, Marvin and Novotny, David and Kerchenbaum, Gael and Labatut, Patrick and Neverova, Natalia and Cremers, Daniel and Vedaldi, Andrea}, 
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, 
  pages={7473--7483}, 
  year={2021}
}

Requirements

The code was tested on Python 3.8.10 with the PyTorch version 1.9.1 and CUDA 10.2. The code also requires the pytorch-geometric library (installation instructions) and matplotlib. Finally, MATLAB with the Statistics and Machine Learning Toolbox is used to pre-process ceratin datasets (we tested MATLAB versions 2019b and 2021b). The code should run on Linux, macOS and Windows.

Installing NeuroMorph

Using Anaconda, you can install the required dependencies as follows:

conda create -n neuromorph python=3.8
conda activate neuromorph
conda install pytorch cudatoolkit=10.2 -c pytorch
conda install matplotlib
conda install pyg -c pyg -c conda-forge

Running NeuroMorph

In order to run NeuroMorph:

  • Specify the location of datasets on your device under data_folder_ in param.py.
  • To use your own data, create a new dataset in data/data.py.
  • To train FAUST remeshed, run the main script main_train.py. Modify the script as needed to train on different data.

For a more detailed tutorial, see the next section.

Reproducing the experiments

We show below how to reproduce the experiments on the FAUST remeshed data.

Data download

You can download experimental mesh data from here from the authors of the Deep Geometric Functional Maps. Download the FAUST_r.zip file from this site, unzip it, and move the content of the directory to /data/mesh/FAUST_r .

Data preprocessing

Meshes must be subsampled and remeshed (for data augmentation during training) and geodesic distance matrices must be computed before the learning code runs. For this, we use the data_preprocessing/preprocess_dataset.m MATLAB scripts (we tested V2019b and V2021b).

Start MATLAB and do the following:

cd 
   
    /data_preprocessing
   
preprocess_dataset("../data/meshes/FAUST_r/", ".off")

The result should be a list of MATLAB mesh files in a mat subfolder (e.g., data/meshes/FAUST_r/mat ), plus additional data.

Model training

If you stored the data in the directory given above, you can train the model by running:

mkdir -p data/{checkpoint,out}
python main_train.py

The trained models will be saved in a series of checkpoints at /data/out/ . Otherwise, edit param.py to change the paths.

Model testing

Upon completion, evaluate the trained model with main_test.py . Specify the checkpoint folder name by running:

python main_test.py <TIME_STAMP_FAUST>

Here is any of the directories saved in /data/out/ . This automatically saves correspondences and interpolations on the FAUST remeshed test set to /data/out/ . For reference, on FAUST you should expect a validation error around 0.25 after 400 epochs.

Contributing

See the CONTRIBUTING file for how to help out.

License

NeuroMorph is MIT licensed, as described in the LICENSE file. NeuroMorph includes a few files from other open source projects, as further detailed in the same LICENSE file.

Owner
Meta Research
Meta Research
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
MohammadReza Sharifi 27 Dec 13, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Unsupervised Image-to-Image Translation

UNIT: UNsupervised Image-to-image Translation Networks Imaginaire Repository We have a reimplementation of the UNIT method that is more performant. It

Ming-Yu Liu 劉洺堉 1.9k Dec 26, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023