NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

Overview

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

This repository provides our implementation of the CVPR 2021 paper NeuroMorph. Our algorithm produces in one go, i.e., in a single feed forward pass, a smooth interpolation and point-to-point correspondences between two input 3D shapes. It is learned in a self-supervised manner from an unlabelled collection of deformable and heterogeneous shapes.

If you use our work, please cite:

@inproceedings{eisenberger2021neuromorph, 
  title={NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go}, 
  author={Eisenberger, Marvin and Novotny, David and Kerchenbaum, Gael and Labatut, Patrick and Neverova, Natalia and Cremers, Daniel and Vedaldi, Andrea}, 
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, 
  pages={7473--7483}, 
  year={2021}
}

Requirements

The code was tested on Python 3.8.10 with the PyTorch version 1.9.1 and CUDA 10.2. The code also requires the pytorch-geometric library (installation instructions) and matplotlib. Finally, MATLAB with the Statistics and Machine Learning Toolbox is used to pre-process ceratin datasets (we tested MATLAB versions 2019b and 2021b). The code should run on Linux, macOS and Windows.

Installing NeuroMorph

Using Anaconda, you can install the required dependencies as follows:

conda create -n neuromorph python=3.8
conda activate neuromorph
conda install pytorch cudatoolkit=10.2 -c pytorch
conda install matplotlib
conda install pyg -c pyg -c conda-forge

Running NeuroMorph

In order to run NeuroMorph:

  • Specify the location of datasets on your device under data_folder_ in param.py.
  • To use your own data, create a new dataset in data/data.py.
  • To train FAUST remeshed, run the main script main_train.py. Modify the script as needed to train on different data.

For a more detailed tutorial, see the next section.

Reproducing the experiments

We show below how to reproduce the experiments on the FAUST remeshed data.

Data download

You can download experimental mesh data from here from the authors of the Deep Geometric Functional Maps. Download the FAUST_r.zip file from this site, unzip it, and move the content of the directory to /data/mesh/FAUST_r .

Data preprocessing

Meshes must be subsampled and remeshed (for data augmentation during training) and geodesic distance matrices must be computed before the learning code runs. For this, we use the data_preprocessing/preprocess_dataset.m MATLAB scripts (we tested V2019b and V2021b).

Start MATLAB and do the following:

cd 
   
    /data_preprocessing
   
preprocess_dataset("../data/meshes/FAUST_r/", ".off")

The result should be a list of MATLAB mesh files in a mat subfolder (e.g., data/meshes/FAUST_r/mat ), plus additional data.

Model training

If you stored the data in the directory given above, you can train the model by running:

mkdir -p data/{checkpoint,out}
python main_train.py

The trained models will be saved in a series of checkpoints at /data/out/ . Otherwise, edit param.py to change the paths.

Model testing

Upon completion, evaluate the trained model with main_test.py . Specify the checkpoint folder name by running:

python main_test.py <TIME_STAMP_FAUST>

Here is any of the directories saved in /data/out/ . This automatically saves correspondences and interpolations on the FAUST remeshed test set to /data/out/ . For reference, on FAUST you should expect a validation error around 0.25 after 400 epochs.

Contributing

See the CONTRIBUTING file for how to help out.

License

NeuroMorph is MIT licensed, as described in the LICENSE file. NeuroMorph includes a few files from other open source projects, as further detailed in the same LICENSE file.

Owner
Meta Research
Meta Research
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022