Show, Edit and Tell: A Framework for Editing Image Captions, CVPR 2020

Related tags

Testingshow-edit-tell
Overview

Show, Edit and Tell: A Framework for Editing Image Captions | arXiv

This contains the source code for Show, Edit and Tell: A Framework for Editing Image Captions, to appear at CVPR 2020

Requirements

  • Python 3.6 or 3.7
  • PyTorch 1.2

For evaluation, you also need:

Argument Parser is currently not supported. We will add support to it soon.

Pretrained Models

You can download the pretrained models from here. Place them in eval folder.

Download and Prepare Features

In this work, we use 36 fixed bottom-up features. If you wish to use the adaptive features (10-100), please refer to adaptive_features folder in this repository and follow the instructions.

First, download the fixed features from here and unzip the file. Place the unzipped folder in bottom-up_features folder.

Next type this command:

python bottom-up_features/tsv.py

This command will create the following files:

  • An HDF5 file containing the bottom up image features for train and val splits, 36 per image for each split, in an (I, 36, 2048) tensor where I is the number of images in the split.
  • PKL files that contain training and validation image IDs mapping to index in HDF5 dataset created above.

Download/Prepare Caption Data

You can either download all the related caption data files from here or create them yourself. The folder contains the following:

  • WORDMAP_coco: maps the words to indices
  • CAPUTIL: stores the information about the existing captions in a dictionary organized as follows: {"COCO_image_name": {"caption": "existing caption to be edited", "encoded_previous_caption": an encoded list of the words, "previous_caption_length": a list contaning the length of the caption, "image_ids": the COCO image id}
  • CAPTIONS the encoded ground-truth captions (a list with number_images x 5 lists. Example: we have 113,287 training images in Karpathy Split, thereofre there is 566,435 lists for the training split)
  • CAPLENS: the length of the ground-truth captions (a list with number_images x 5 vallues)
  • NAMES: the COCO image name in the same order as the CAPTIONS
  • GENOME_DETS: the splits and image ids for loading the images in accordance to the features file created above

If you'd like to create the caption data yourself, download Karpathy's Split training, validation, and test splits. This zip file contains the captions. Place the file in caption data folder. You should also have the pkl files created from the 'Download Features' section: train36_imgid2idx.pkl and val36_imgid2idx.pkl.

Next, run:

python preprocess_caps.py

This will dump all the files to the folder caption data.

Next, download the existing captios to be edited, and organize them in a list containing dictionaries with each dictionary in the following format: {"image_id": COCO_image_id, "caption": "caption to be edited", "file_name": "split\\COCO_image_name"}. For example: {"image_id": 522418, "caption": "a woman cutting a cake with a knife", "file_name": "val2014\\COCO_val2014_000000522418.jpg"}. In our work, we use the captions produced by AoANet.

Next, run:

python preprocess_existing_caps.py

This will dump all the existing caption files to the folder caption data.

Prepare/Download Sequence-Level Training Data

Download the RL-data for sequence-level training used for computing metric scores from here.

Alternitavely, you may prepare the data yourself:

Run the following command:

python preprocess_rl.py

This will dump two files in the data folder used for computing metric scores.

Training and Validation

XE training stage:

For training DCNet, run:

python dcnet.py

For optimizing DCNet with MSE, run:

python dcnet_with_mse.py

For training editnet:

python editnet.py
Cider-D Optimization stage:

For training DCNet, run:

python dcnet_rl.py

For training editnet:

python editnet_rl.py

Evaluation

Refer to eval folder for instructions. All the generated captions and scores from our model can be found in the outputs folder.

BLEU-1 BLEU-4 CIDEr SPICE
Cross-Entropy Loss 77.9 38.0 1.200 21.2
CIDEr Optimization 80.6 39.2 1.289 22.6

Citation

@InProceedings{Sammani_2020_CVPR,
author = {Sammani, Fawaz and Melas-Kyriazi, Luke},
title = {Show, Edit and Tell: A Framework for Editing Image Captions},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

References

Our code is mainly based on self-critical and show attend and tell. We thank both authors.

Owner
Fawaz Sammani
The human brain is a miracle every human has, and mathematically modelling that brain is an overwhelming matter! I like teaching machines vision-language
Fawaz Sammani
A library to make concurrent selenium tests that automatically download and setup webdrivers

AutoParaSelenium A library to make parallel selenium tests that automatically download and setup webdrivers Usage Installation pip install autoparasel

Ronak Badhe 8 Mar 13, 2022
PyBuster A directory busting tool for web application penetration tester, written in python

PyBuster A directory busting tool for web application penetration tester, written in python. Supports custom wordlist,recursive search. Screenshots Pr

Anukul Pandey 4 Jan 30, 2022
Python Moonlight (Machine Learning) Practice

PyML Python Moonlight (Machine Learning) Practice Contents Design Documentation Prerequisites Checklist Dev Setup Testing Run Prerequisites Python 3 P

Dockerian Seattle 2 Dec 25, 2022
Using openpyxl in Python, performed following task

Python-Automation-with-openpyxl Using openpyxl in Python, performed following tasks on an Excel Sheet containing Product Suppliers along with their pr

1 Apr 06, 2022
Pytest modified env

Pytest plugin to fail a test if it leaves modified os.environ afterwards.

wemake.services 7 Sep 11, 2022
Argument matchers for unittest.mock

callee Argument matchers for unittest.mock More robust tests Python's mocking library (or its backport for Python 3.3) is simple, reliable, and easy

Karol Kuczmarski 77 Nov 03, 2022
Travel through time in your tests.

time-machine Travel through time in your tests. A quick example: import datetime as dt

Adam Johnson 373 Dec 27, 2022
Android automation project with pytest+appium

Android automation project with pytest+appium

1 Oct 28, 2021
A complete test automation tool

Golem - Test Automation Golem is a test framework and a complete tool for browser automation. Tests can be written with code in Python, codeless using

486 Dec 30, 2022
MultiPy lets you conveniently keep track of your python scripts for personal use or showcase by loading and grouping them into categories. It allows you to either run each script individually or together with just one click.

MultiPy About MultiPy is a graphical user interface built using Dear PyGui Python GUI Framework that lets you conveniently keep track of your python s

56 Oct 29, 2022
It helps to use fixtures in pytest.mark.parametrize

pytest-lazy-fixture Use your fixtures in @pytest.mark.parametrize. Installation pip install pytest-lazy-fixture Usage import pytest @pytest.fixture(p

Marsel Zaripov 299 Dec 24, 2022
Automated testing tool developed in python for Advanced mathematical operations.

Advanced-Maths-Operations-Validations Automated testing tool developed in python for Advanced mathematical operations. Requirements Python 3.5 or late

Nikhil Repale 1 Nov 16, 2021
Automated Security Testing For REST API's

Astra REST API penetration testing is complex due to continuous changes in existing APIs and newly added APIs. Astra can be used by security engineers

Flipkart Incubator 2.1k Dec 31, 2022
pytest plugin for distributed testing and loop-on-failures testing modes.

xdist: pytest distributed testing plugin The pytest-xdist plugin extends pytest with some unique test execution modes: test run parallelization: if yo

pytest-dev 1.1k Dec 30, 2022
Front End Test Automation with Pytest Framework

Front End Test Automation Framework with Pytest Installation and running instructions: 1. To install the framework on your local machine: clone the re

Sergey Kolokolov 2 Jun 17, 2022
Penetration testing

Penetration testing

3 Jan 11, 2022
A browser automation framework and ecosystem.

Selenium Selenium is an umbrella project encapsulating a variety of tools and libraries enabling web browser automation. Selenium specifically provide

Selenium 25.5k Jan 01, 2023
No longer maintained, please migrate to model_bakery

Model Mommy: Smart fixtures for better tests IMPORTANT: Model Mommy is no longer maintained and was replaced by Model Bakery. Please, consider migrati

Bernardo Fontes 917 Oct 04, 2022
Object factory for Django

Model Bakery: Smart fixtures for better tests Model Bakery offers you a smart way to create fixtures for testing in Django. With a simple and powerful

Model Bakers 632 Jan 08, 2023
A simple serverless create api test repository. Please Ignore.

serverless-create-api-test A simple serverless create api test repository. Please Ignore. Things to remember: Setup workflow Change Name in workflow e

Sarvesh Bhatnagar 1 Jan 18, 2022