Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Overview

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets

This is the official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR 2021). For more details, please refer to:


Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets

Yuan-Hong Liao, Amlan Kar, Sanja Fidler

University of Toronto

[Paper] [Video] [Project]

CVPR2021 Oral

Data is the engine of modern computer vision, which necessitates collecting large-scale datasets. This is expensive, and guaranteeing the quality of the labels is a major challenge. In this paper, we investigate efficient annotation strategies for collecting multi-class classification labels fora large collection of images. While methods that exploit learnt models for labeling exist, a surprisingly prevalent approach is to query humans for a fixed number of labels per datum and aggregate them, which is expensive. Building on prior work on online joint probabilistic modeling of human annotations and machine generated beliefs, we propose modifications and best practices aimed at minimizing human labeling effort. Specifically, we make use ofadvances in self-supervised learning, view annotation as a semi-supervised learning problem, identify and mitigate pitfalls and ablate several key design choices to propose effective guidelines for labeling. Our analysis is done in a more realistic simulation that involves querying human labelers, which uncovers issues with evaluation using existing worker simulation methods. Simulated experiments on a 125k image subset of the ImageNet dataset with 100 classes showthat it can be annotated to 80% top-1 accuracy with 0.35 annotations per image on average, a 2.7x and 6.7x improvement over prior work and manual annotation, respectively.


Code usage

  • Downdload the extracted BYOL features and change root directory accordingly
wget -P data/features/ http://www.cs.toronto.edu/~andrew/research/cvpr2021-good_practices/data/byol_r50-e3b0c442.pth_feat1.npy 

Replace REPO_DIR (here) with the absolute path to the repository.

  • Run online labeling with simulated workers
    • <EXPERIMENT> can be imagenet_split_0~5, imagenet_animal, imagenet_100_classes
    • <METHOD> can be ds_model, lean, improved_lean, efficient_annotation
    • <SIMULATION> can be amt_structured_noise, amt_uniform_noise
python main.py experiment=<EXPERIMENT> learner_method=<METHOD> simulation <SIMULATION>

To change other configurations, go check the config.yaml here.

Code Structure

There are several components in our system: Sampler, AnnotationHolder, Learner, Optimizer and Aggregator.

  • Sampler: We implement RandomSampler and GreedyTaskAssignmentSampler. For GreedyTaskAssignmentSampler, you need to specify an additional flag max_annotation_per_worker

For example,

python main.py experiment=imagenet_animal learner_method=efficient_annotation simulation=amt_structured_noise sampler.algo=greedy_task_assignment sampler.max_annotation_per_worker=2000
  • AnnotationHolder: It holds all information of each example including worker annotation, ground truth and current risk estimation. For simulated worker, you can call annotation_holder.collect_annotation to query annotations. You can also sample the annotation outside and add them by calling annotation_holder.add_annotation

  • Learner: We implement DummyLearner and LinearNNLearner. You can use your favorite architecture by overwriting NNLearner.init_learner

  • Optimizer: We implement EMOptimizer. By calling optimizer.step, the optimizer perform EM for a fixed number of times unless it's converged. If DummyLearner is not used, the optimizer is expected to call optimizer.fit_machine_learner to train the machine learner and perform prediction over all data examples.

  • Aggregator: We implement MjAggregator and BayesAggregator. MjAggregator performs majority vote to infer the final label. BayesAggregator treat the ground truth and worker skill as hidden variables and infer it based on the observation (worker annotation).

Citation

If you use this code, please cite:

@misc{liao2021good,
      title={Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets}, 
      author={Yuan-Hong Liao and Amlan Kar and Sanja Fidler},
      year={2021},
      eprint={2104.12690},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Sanja Fidler's Lab
Sanja Fidler's lab at the University of Toronto
Sanja Fidler's Lab
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predicate.

DeepProbLog DeepProbLog is an extension of ProbLog that integrates Probabilistic Logic Programming with deep learning by introducing the neural predic

KU Leuven Machine Learning Research Group 94 Dec 18, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Breaching - Breaching privacy in federated learning scenarios for vision and text

Breaching - A Framework for Attacks against Privacy in Federated Learning This P

Jonas Geiping 139 Jan 03, 2023
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022