Backend, modern REST API for obtaining match and odds data crawled from multiple sites. Using FastAPI, MongoDB as database, Motor as async MongoDB client, Scrapy as crawler and Docker.

Overview

img/logo.png


https://circleci.com/gh/franloza/apiestas/tree/master.svg?style=shield

Introduction

Apiestas is a project composed of a backend powered by the awesome framework FastAPI and a crawler powered by Scrapy.

This project has followed code examples from RealWorld apps, specifically the following projects:

The crawler inserts and updates data from the MongoDB database by using the Apiestas REST API and the data is exposed through this API. The REST API communicates with the database by using Motor - the async Python driver for MongoDB. Finally, this application uses Typer to create the Apiestas CLI, which is the main entrypoint of the application.

Quickstart

First, set environment variables and create database. For example using docker:

export MONGO_DB=rwdb MONGO_PORT=5432 MONGO_USER=MONGO MONGO_PASSWORD=MONGO
docker run --name mongodb --rm -e MONGO_USER="$MONGO_USER" -e MONGO_PASSWORD="$MONGO_PASSWORD" -e MONGO_DB="$MONGO_DB" MONGO
export MONGO_HOST=$(docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' pgdb)
mongo --host=$MONGO_HOST --port=$MONGO_PORT --username=$MONGO_USER $MONGO_DB

Then run the following commands to bootstrap your environment with pipenv:

git clone https://github.com/franloza/apiestas
cd apiestas
pipenv install
pipenv shell

Then create .env file (or rename and modify .env.example) in api or crawling folders and set environment variables for every application:

cd api
touch .env
echo DB_CONNECTION=mongo://$MONGO_USER:$MONGO_PASSWORD@$MONGO_HOST:$MONGO_PORT/$MONGO_DB >> .env

To run the web application in debug use:

python main.py api --reload

Development with Docker

You must have docker and docker-compose tools installed to work with material in this section. Then just run:

cd docker
docker-compose up -d

The API will be available on localhost:9000 in your browser.

If you want to enable the surebets calculation feature, you need to use the extended Docker Compose file for Kafka environment. This file is docker-compose.kafka.yml. However, instead of executing this file directly along with docker-compose.yml file, execute run-with-kafka.sh as it is necessary to set up Kafka Connect, MongoDB Replica Set and wait for the systems to be ready. containers initialization

If you run Apiestas with Kafka and Kafka Connect, you will enable Kafka UI, where you can to examine the topics and other info.: http://localhost:9021 or http://localhost:8001/

  • The matches topic should have the crawled bets and matches.
  • The mongo.apiestas.matches topic should contain the change events.

You can also examine the collections in the MongoDB by executing:

docker-compose exec mongo /usr/bin/mongo

To see the logs of the different services, you can execute the following command:

docker-compose -f docker-compose.yml -f docker-compose.kafka.yml  logs -f api surebets crawler

Run tests with Docker

cd docker
docker-compose -f docker-compose-test.yml run tests

Web routes

All routes are available on /docs or /redoc paths with Swagger or ReDoc.

Docs

img/docs.png

Redoc

img/redoc.png

Data sources

Currently the application implements two working crawlers:

  • oddsportalcom - Used as ground truth for matches and odds
  • elcomparador.com - for odds data
  • Codere - for odds data

Architecture

img/apiestas_arch.png

TODO

  1. Add support for more bet types calculation
  2. Support time series visualization
Owner
Fran Lozano
Data Engineer and software developer.
Fran Lozano
python fastapi example connection to mysql

Quickstart Then run the following commands to bootstrap your environment with poetry: git clone https://github.com/xiaozl/fastapi-realworld-example-ap

55 Dec 15, 2022
[rewrite 중] 코로나바이러스감염증-19(COVID-19)의 국내/국외 발생 동향 조회 API | Coronavirus Infectious Disease-19 (COVID-19) outbreak trend inquiry API

COVID-19API 코로나 바이러스 감염증-19(COVID-19, SARS-CoV-2)의 국내/외 발생 동향 조회 API Corona Virus Infectious Disease-19 (COVID-19, SARS-CoV-2) outbreak trend inquiry

Euiseo Cha 28 Oct 29, 2022
sample web application built with FastAPI + uvicorn

SPARKY Sample web application built with FastAPI & Python 3.8 shows simple Flask-like structure with a Bootstrap template index.html also has a backgr

mrx 21 Jan 03, 2022
An extension for GINO to support Starlette server.

gino-starlette Introduction An extension for GINO to support starlette server. Usage The common usage looks like this: from starlette.applications imp

GINO Community 75 Dec 08, 2022
Backend logic implementation for realworld with awesome FastAPI

Backend logic implementation for realworld with awesome FastAPI

Nik 2.2k Jan 08, 2023
Twitter API with fastAPI

Twitter API with fastAPI Content Forms Cookies and headers management Files edition Status codes HTTPExceptions Docstrings or documentation Deprecate

Juan Agustin Di Pasquo 1 Dec 21, 2021
A Jupyter server based on FastAPI (Experimental)

jupyverse is experimental and should not be used in place of jupyter-server, which is the official Jupyter server.

Jupyter Server 122 Dec 27, 2022
Basic FastAPI starter with GraphQL, Docker, and MongoDB configurations.

FastAPI + GraphQL Starter A python starter project using FastAPI and GraphQL. This project leverages docker for containerization and provides the scri

Cloud Bytes Collection 1 Nov 24, 2022
EML analyzer is an application to analyze the EML file

EML analyzer EML analyzer is an application to analyze the EML file which can: Analyze headers. Analyze bodies. Extract IOCs (URLs, domains, IP addres

Manabu Niseki 162 Dec 28, 2022
python template private service

Template for private python service This is a cookiecutter template for an internal REST API service, written in Python, inspired by layout-golang. Th

UrvanovCompany 15 Oct 02, 2022
I'm curious if pydantic + fast api can be sensibly used with DDD + hex arch methodology

pydantic-ddd-exploration I'm curious if pydantic + fast api can be sensibly used with DDD + hex arch methodology Prerequisites nix direnv (nix-env -i

Olgierd Kasprowicz 2 Nov 17, 2021
A Python pickling decompiler and static analyzer

Fickling Fickling is a decompiler, static analyzer, and bytecode rewriter for Python pickle object serializations. Pickled Python objects are in fact

Trail of Bits 162 Dec 13, 2022
a lightweight web framework based on fastapi

start-fastapi Version 2021, based on FastAPI, an easy-to-use web app developed upon Starlette Framework Version 2020 中文文档 Requirements python 3.6+ (fo

HiKari 71 Dec 30, 2022
Monitor Python applications using Spring Boot Admin

Pyctuator Monitor Python web apps using Spring Boot Admin. Pyctuator supports Flask, FastAPI, aiohttp and Tornado. Django support is planned as well.

SolarEdge Technologies 145 Dec 28, 2022
Publish Xarray Datasets via a REST API.

Xpublish Publish Xarray Datasets via a REST API. Serverside: Publish a Xarray Dataset through a rest API ds.rest.serve(host="0.0.0.0", port=9000) Clie

xarray-contrib 106 Jan 06, 2023
Backend Skeleton using FastAPI and Sqlalchemy ORM

Backend API Skeleton Based on @tiangolo's full stack postgres template, with some things added, some things removed, and some things changed. This is

David Montague 18 Oct 31, 2022
The template for building scalable web APIs based on FastAPI, Tortoise ORM and other.

FastAPI and Tortoise ORM. Powerful but simple template for web APIs w/ FastAPI (as web framework) and Tortoise-ORM (for working via database without h

prostomarkeloff 95 Jan 08, 2023
REST API with FastAPI and SQLite3.

REST API with FastAPI and SQLite3

Luis Quiñones Requelme 2 Mar 14, 2022
OpenAPI generated FastAPI server

OpenAPI generated FastAPI server This Python package is automatically generated by the OpenAPI Generator project: API version: 1.0.0 Build package: or

microbo 1 Oct 31, 2021
A minimalistic example of preparing a model for (synchronous) inference in production.

A minimalistic example of preparing a model for (synchronous) inference in production.

Anton Lozhkov 6 Nov 29, 2021