CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering" official PyTorch implementation.

Overview

LED2-Net

This is PyTorch implementation of our CVPR 2021 Oral paper "LED2-Net: Monocular 360˚ Layout Estimation via Differentiable Depth Rendering".

You can visit our project website and upload your own panorama to see the 3D results!

[Project Website] [Paper (arXiv)]

Prerequisite

This repo is primarily based on PyTorch. You can use the follwoing command to intall the dependencies.

pip install -r requirements.txt

Preparing Training Data

Under LED2Net/Dataset, we provide the dataloader of Matterport3D and Realtor360. The annotation formats of the two datasets follows PanoAnnotator. The detailed description of the format is explained in LayoutMP3D.

Under config/, config_mp3d.yaml and config_realtor360.yaml are the configuration file for Matterport3D and Realtor360.

Matterport3D

To train/val on Matterport3D, please modify the two items in config_mp3d.yaml.

dataset_image_path: &dataset_image_path '/path/to/image/location'
dataset_label_path: &dataset_label_path '/path/to/label/location'

The dataset_image_path and dataset_label_path follow the folder structure:

  dataset_image_path/
  |-------17DRP5sb8fy/
          |-------00ebbf3782c64d74aaf7dd39cd561175/
                  |-------color.jpg
          |-------352a92fb1f6d4b71b3aafcc74e196234/
                  |-------color.jpg
          .
          .
  |-------gTV8FGcVJC9/
          .
          .
  dataset_label_path/
  |-------mp3d_train.txt
  |-------mp3d_val.txt
  |-------mp3d_test.txt
  |-------label/
          |-------Z6MFQCViBuw_543e6efcc1e24215b18c4060255a9719_label.json
          |-------yqstnuAEVhm_f2eeae1a36f14f6cb7b934efd9becb4d_label.json
          .
          .
          .

Then run main.py and specify the config file path

python main.py --config config/config_mp3d.yaml --mode train # For training
python main.py --config config/config_mp3d.yaml --mode val # For testing

Realtor360

To train/val on Realtor360, please modify the item in config_realtor360.yaml.

dataset_path: &dataset_path '/path/to/dataset/location'

The dataset_path follows the folder structure:

  dataset_path/
  |-------train.txt
  |-------val.txt
  |-------sun360/
          |-------pano_ajxqvkaaokwnzs/
                  |-------color.png
                  |-------label.json
          .
          .
  |-------istg/
          |-------1/
                  |-------1/
                          |-------color.png
                          |-------label.json
                  |-------2/
                          |-------color.png
                          |-------label.json
                  .
                  .
          .
          .
          
  

Then run main.py and specify the config file path

python main.py --config config/config_realtor360.yaml --mode train # For training
python main.py --config config/config_realtor360.yaml --mode val # For testing

Run Inference

After finishing the training, you can use the following command to run inference on your own data (xxx.jpg or xxx.png).

python run_inference.py --config YOUR_CONFIG --src SRC_FOLDER/ --dst DST_FOLDER --ckpt XXXXX.pkl

This script will predict the layouts of all images (jpg or png) under SRC_FOLDER/ and store the results as json files under DST_FOLDER/.

Pretrained Weights

We provide the pretrained model of Realtor360 in this link.

Currently, we use DuLa-Net's post processing for inference. We will release the version using HorizonNet's post processing later.

Layout Visualization

To visualize the 3D layout, we provide the visualization tool in 360LayoutVisualizer. Please clone it and install the corresponding packages. Then, run the following command

cd 360LayoutVisualizer/
python visualizer.py --img xxxxxx.jpg --json xxxxxx.json

Citation

@misc{wang2021led2net,
      title={LED2-Net: Monocular 360 Layout Estimation via Differentiable Depth Rendering}, 
      author={Fu-En Wang and Yu-Hsuan Yeh and Min Sun and Wei-Chen Chiu and Yi-Hsuan Tsai},
      year={2021},
      eprint={2104.00568},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Fu-En Wang
Hi, I am a member of VSLAB in National Tsing Hua University. You can check my personal website for more research projects (https://fuenwang.ml/).
Fu-En Wang
A Screen Translator/OCR Translator made by using Python and Tesseract, the user interface are made using Tkinter. All code written in python.

About An OCR translator tool. Made by me by utilizing Tesseract, compiled to .exe using pyinstaller. I made this program to learn more about python. I

Fauzan F A 41 Dec 30, 2022
Tracking the latest progress in Scene Text Detection and Recognition: Must-read papers well organized

SceneTextPapers Tracking the latest progress in Scene Text Detection and Recognition: must-read papers well organized Information about this repositor

Shangbang Long 763 Jan 01, 2023
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)

SEAM The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion. You can also download the repos

Hibercraft 459 Dec 26, 2022
Document Layout Analysis Projects

Layout_Analysis Introduction This is an implementation of RLSA and X-Y Cut with OpenCV Dependencies OpenCV 3.0+ How to use Compile with g++ : g++ -std

22 Dec 08, 2022
Automatically download multiple papers by keywords in CVPR

CVFPaperHelper Automatically download multiple papers by keywords in CVPR Install mkdir PapersToRead cd PaperToRead pip install requests tqdm git clon

46 Jun 08, 2022
The papers published in top-tier AI conferences in recent years.

AI-conference-papers The papers published in top-tier AI conferences in recent years. Paper table AAAI ICLR CVPR ICML ICCV ECCV NIPS 2019 ✔️ ✔️ ✔️ ✔️

Jinbae Park 6 Dec 09, 2022
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
🖺 OCR using tensorflow with attention

tensorflow-ocr 🖺 OCR using tensorflow with attention, batteries included Installation git clone --recursive http://github.com/pannous/tensorflow-ocr

646 Nov 11, 2022
FOTS Pytorch Implementation

News!!! Recognition branch now is added into model. The whole project has beed optimized and refactored. ICDAR Dataset SynthText 800K Dataset detectio

Ning Lu 599 Dec 19, 2022
Captcha Recognition

The objective of this project is to recognize the target numbers in the captcha images correctly which would tell us how good or bad a captcha system has been built.

Mohit Kaushik 5 Feb 20, 2022
a Deep Learning Framework for Text

DeLFT DeLFT (Deep Learning Framework for Text) is a Keras and TensorFlow framework for text processing, focusing on sequence labelling (e.g. named ent

Patrice Lopez 350 Dec 19, 2022
Toolbox for OCR post-correction

Ochre Ochre is a toolbox for OCR post-correction. Please note that this software is experimental and very much a work in progress! Overview of OCR pos

National Library of the Netherlands / Research 117 Nov 10, 2022
Implementation of EAST scene text detector in Keras

EAST: An Efficient and Accurate Scene Text Detector This is a Keras implementation of EAST based on a Tensorflow implementation made by argman. The or

Jan Zdenek 208 Nov 15, 2022
Let's explore how we can extract text from forms

Form Segmentation Let's explore how we can extract text from any forms / scanned pages. Objectives The goal is to find an algorithm that can extract t

Philip Doxakis 42 Jun 05, 2022
Generates a message from the infamous Jerma Impostor image

Generate your very own jerma sus imposter message. Modes: Default Mode: Only supports the characters " ", !, a, b, c, d, e, h, i, m, n, o, p, q, r, s,

Giorno420 1 Oct 27, 2022
docstrum

Docstrum Algorithm Getting Started This repo is for developing a Docstrum algorithm presented by O’Gorman (1993). Disclaimer This source code is built

Chulwoo Mike Pack 54 Dec 13, 2022
Automatically resolve RidderMaster based on TensorFlow & OpenCV

AutoRiddleMaster Automatically resolve RidderMaster based on TensorFlow & OpenCV 基于 TensorFlow 和 OpenCV 实现的全自动化解御迷士小马谜题 Demo How to use Deploy the ser

神龙章轩 5 Nov 19, 2021
Generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv

basic-dataset-generator-from-image-of-numbers generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv inpu

1 Jan 01, 2022
Python Computer Vision application that allows users to draw/erase on the screen using their webcam.

CV-Virtual-WhiteBoard The Virtual WhiteBoard is a project I made using the OpenCV and Mediapipe Python libraries. Using your index and middle finger y

Stephen Wang 1 Jan 07, 2022
Hiiii this is the Spanish for Linux and win 10 and in the near future the english version of PortScan my new tool on which you can see what ports are Open only with the IP adress.

PortScanner-by-IIT PortScanner es una herramienta programada en Python3. Como su nombre indica esta herramienta escanea los primeros 150 puertos de re

5 Sep 19, 2022