easyopt is a super simple yet super powerful optuna-based Hyperparameters Optimization Framework that requires no coding.

Overview

easyopt

easyopt is a super simple yet super powerful optuna-based Hyperparameters Optimization Framework that requires no coding.

Features

  • YAML Configuration
  • Distributed Parallel Optimization
  • Experiments Monitoring and Crash Recovering
  • Experiments Replicas
  • Real Time Pruning
  • A wide variety of sampling strategies
    • Tree-structured Parzen Estimator
    • CMA-ES
    • Grid Search
    • Random Search
  • A wide variety of pruning strategies
    • Asynchronous Successive Halving Pruning
    • Hyperband Pruning
    • Median Pruning
    • Threshold Pruning
  • A wide variety of DBMSs
    • Redis
    • SQLite
    • PostgreSQL
    • MySQL
    • Oracle
    • And many more

Installation

To install easyopt just type:

pip install easyopt

Example

easyopt expects that hyperparameters are passed using the command line arguments.

For example this problem has two hyperparameters x and y

import argparse

parser = argparse.ArgumentParser()

parser.add_argument("--x", type=float, required=True)
parser.add_argument("--y", type=float, required=True)

args = parser.parse_args()

def objective(x, y):
    return x**2 + y**2

F = objective(args.x ,args.y)

To integrate easyopt you just have to

  • import easyopt
  • Add easyopt.objective(...) to report the experiment objective function value

The above code becomes:

import argparse
import easyopt

parser = argparse.ArgumentParser()

parser.add_argument("--x", type=float, required=True)
parser.add_argument("--y", type=float, required=True)

args = parser.parse_args()

def objective(x, y):
    return x**2 + y**2

F = objective(args.x ,args.y)
easyopt.objective(F)

Next you have to create the easyopt.yml to define the problem search space, sampler, pruner, storage, etc.

command: python problem.py {args}
storage: sqlite:////tmp/easyopt-toy-problem.db
sampler: TPESampler
parameters:
  x:
    distribution: uniform
    low: -10
    high: 10
  y:
    distribution: uniform
    low: -10
    high: 10

You can find the compete list of distributions here (all the suggest_* functions)

Finally you have to create a study

easyopt create test-study

And run as many agents as you want

easyopt agent test-study

After a while the hyperparameter optimization will finish

Trial 0 finished with value: 90.0401543850028 and parameters: {'x': 5.552902529323713, 'y': 7.694506344453366}. Best is trial 0 with value: 90.0401543850028.
Trial 1 finished with value: 53.38635524683359 and parameters: {'x': 0.26609756303111, 'y': 7.301749607716118}. Best is trial 1 with value: 53.38635524683359.
Trial 2 finished with value: 64.41207387363161 and parameters: {'x': 7.706366704967074, 'y': 2.2414250115064167}. Best is trial 1 with value: 53.38635524683359.
...
...
Trial 53 finished with value: 0.5326245807950265 and parameters: {'x': -0.26584110075742917, 'y': 0.6796713102251005}. Best is trial 35 with value: 0.11134607529340049.
Trial 54 finished with value: 8.570230212116037 and parameters: {'x': 2.8425893061307295, 'y': 0.6999401751487438}. Best is trial 35 with value: 0.11134607529340049.
Trial 55 finished with value: 96.69479467451664 and parameters: {'x': -0.3606041968175481, 'y': -9.826736960342137}. Best is trial 35 with value: 0.11134607529340049.

YAML Structure

The YAML configuration file is structured as follows

command: 
storage: 
   
sampler: 
   
pruner: 
   
direction: 
   
replicas: 
   
parameters:
  parameter-1:
    distribution: 
   
    
   : 
   
    
   : 
   
    ...
  ...
  • command: the command to execute to run the experiment.
    • {args} will be expanded to --parameter-1=value-1 --parameter-2=value-2
    • {name} will be expanded to the study name
  • storage: the storage to use for the study. A full list of storages is available here
  • sampler: the sampler to use. The full list of samplers is available here
  • pruner: the pruner to use. The full list of pruners is available here
  • direction: can be minimize or maximize (default: minimize)
  • replicas: the number of replicas to run for the same experiment (the experiment result is the average). (default: 1)
  • parameters: the parameters to optimize
    • for each parameter have to specify
      • distribution the distribution to use. The full list of distributions is available here (all the suggest_* functions)
      • arg: value
        • Arguments of the distribution. The arguments documentation is available here

CLI Interface

easyopt offer two CLI commands:

  • create to create a study using the easyopt.yml file or the one specified with --config
  • agent to run the agent for

LIB Interface

When importing easyopt you can use three functions:

  • easyopt.objective(value) to report the final objective function value of the experiment
  • easyopt.report(value) to report the current objective function value of the experiment (used by the pruner)
  • easyopt.should_prune() it returns True if the pruner thinks that the run should be pruned

Examples

You can find some examples here

Contributions and license

The code is released as Free Software under the GNU/GPLv3 license. Copying, adapting and republishing it is not only allowed but also encouraged.

For any further question feel free to reach me at [email protected] or on Telegram @galatolo

Owner
Federico Galatolo
PhD Student @ University of Pisa
Federico Galatolo
Web3.py plugin for using Flashbots' bundle APIs

This library works by injecting a new module in the Web3.py instance, which allows submitting "bundles" of transactions directly to miners. This is do

Flashbots 293 Dec 31, 2022
Microservice example with Python, Faust-Streaming and Kafka (Redpanda)

Microservices Orchestration with Python, Faust-Streaming and Kafka (Redpanda) Example project for PythonBenin meetup. It demonstrates how to use Faust

Lé 3 Jun 13, 2022
Dazzler is a Python async UI/Web framework built with aiohttp and react.

Dazzler is a Python async UI/Web framework built with aiohttp and react. Create dazzling fast pages with a layout of Python components and bindings to update from the backend.

Philippe Duval 17 Oct 18, 2022
A familiar HTTP Service Framework for Python.

Responder: a familiar HTTP Service Framework for Python Powered by Starlette. That async declaration is optional. View documentation. This gets you a

Taoufik 3.6k Dec 27, 2022
Otter is framework for creating microservices in Flask like fassion using RPC communication via message queue.

Otter Framework for microservices. Overview Otter is framework for creating microservices in Flask like fassion using RPC communication via message qu

Volodymyr Biloshytskyi 4 Mar 23, 2022
Light, Flexible and Extensible ASGI API framework

Starlite Starlite is a light, opinionated and flexible ASGI API framework built on top of pydantic and Starlette. Check out the Starlite documentation

Na'aman Hirschfeld 1.6k Jan 09, 2023
Free and open source full-stack enterprise framework for agile development of secure database-driven web-based applications, written and programmable in Python.

Readme web2py is a free open source full-stack framework for rapid development of fast, scalable, secure and portable database-driven web-based applic

2k Dec 31, 2022
The web framework for inventors

Emmett is a full-stack Python web framework designed with simplicity in mind. The aim of Emmett is to be clearly understandable, easy to be learned an

Emmett 796 Dec 26, 2022
Trame let you weave various components and technologies into a Web Application solely written in Python.

Trame Trame aims to be a framework for building interactive applications using a web front-end in plain Python. Such applications can be used locally

Kitware, Inc. 85 Dec 29, 2022
Pyrin is an application framework built on top of Flask micro-framework to make life easier for developers who want to develop an enterprise application using Flask

Pyrin A rich, fast, performant and easy to use application framework to build apps using Flask on top of it. Pyrin is an application framework built o

Mohamad Nobakht 10 Jan 25, 2022
Django Ninja - Fast Django REST Framework

Django Ninja is a web framework for building APIs with Django and Python 3.6+ type hints.

Vitaliy Kucheryaviy 3.8k Jan 02, 2023
WebSocket and WAMP in Python for Twisted and asyncio

Autobahn|Python WebSocket & WAMP for Python on Twisted and asyncio. Quick Links: Source Code - Documentation - WebSocket Examples - WAMP Examples Comm

Crossbar.io 2.4k Jan 06, 2023
Asita is a web application framework for python based on express-js framework.

Asita is a web application framework for python. It is designed to be easy to use and be more easy for javascript users to use python frameworks because it is based on express-js framework.

Mattéo 4 Nov 16, 2021
Library for building WebSocket servers and clients in Python

What is websockets? websockets is a library for building WebSocket servers and clients in Python with a focus on correctness and simplicity. Built on

Aymeric Augustin 4.3k Dec 31, 2022
Web3.py plugin for using Flashbots' bundle APIs

This library works by injecting a new module in the Web3.py instance, which allows submitting "bundles" of transactions directly to miners. This is done by also creating a middleware which captures c

Georgios Konstantopoulos 294 Jan 04, 2023
bottle.py is a fast and simple micro-framework for python web-applications.

Bottle: Python Web Framework Bottle is a fast, simple and lightweight WSGI micro web-framework for Python. It is distributed as a single file module a

Bottle Micro Web Framework 7.8k Dec 31, 2022
CherryPy is a pythonic, object-oriented HTTP framework. https://docs.cherrypy.org/

Welcome to the GitHub repository of CherryPy! CherryPy is a pythonic, object-oriented HTTP framework. It allows building web applications in much the

CherryPy 1.6k Dec 29, 2022
Web framework based on type hint。

Hint API 中文 | English 基于 Type hint 的 Web 框架 hintapi 文档 hintapi 实现了 WSGI 接口,并使用 Radix Tree 进行路由查找。是最快的 Python web 框架之一。一切特性都服务于快速开发高性能的 Web 服务。 大量正确的类型

Aber 19 Dec 02, 2022
Pulumi-checkly - Checkly Pulumi Provider With Python

🚨 This project is still in very early stages and is not stable, use at your own

Checkly 16 Dec 15, 2022
A proof-of-concept CherryPy inspired Python micro framework

Varmkorv Varmkorv is a CherryPy inspired micro framework using Werkzeug. This is just a proof of concept. You are free to use it if you like, or find

Magnus Karlsson 1 Nov 22, 2021