Multi-scale discriminator feature-wise loss function

Related tags

Deep Learningmdf
Overview

Multi-Scale Discriminative Feature Loss

This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algorithms.

Description

Central to the application of neural networks in image restoration problems, such as single image super resolution, is the choice of a loss function that encourages natural and perceptually pleasing results. We provide a lightweight feature extractor that outperforms state-of-the-art loss functions in single image super resolution, denoising, and JPEG artefact removal. We propose a novel Multi-Scale Discriminative Feature (MDF) loss comprising a series of discriminators, trained to penalize errors introduced by a generator. For further information please refer to the project webpage.

Usage

The code runs in Python3 and Pytorch.

First install the dependencies by running:

pip3 install -r requirements.txt

To run a simple example, optimizing image pixels:

import torch as pt
import torch.optim as optim
import imageio
import matplotlib.pyplot as plt
import numpy as np
from torch.autograd import Variable

from mdfloss import MDFLoss


# Set parameters
cuda_available = False
epochs = 25
application = 'Denoising'
image_path = './misc/i10.png'

if application =='SISR':
    path_disc = "./weights/Ds_SISR.pth"
elif application == 'Denoising':
    path_disc = "./weights/Ds_Denoising.pth"
elif application == 'JPEG':
    path_disc = "./weights/Ds_JPEG.pth"

# Read reference images
imgr = imageio.imread(image_path)
imgr = pt.from_numpy(imageio.core.asarray(imgr/255.0))
imgr = imgr.type(dtype=pt.float64)
imgr = imgr.permute(2,0,1)
imgr = imgr.unsqueeze(0).type(pt.FloatTensor)

# Create a noisy image 
imgd = pt.rand(imgr.size())

if cuda_available:
    imgr = imgr.cuda()
    imgd = imgd.cuda()

# Convert images to variables to support gradients
imgrb = Variable( imgr, requires_grad = False)
imgdb = Variable( imgd, requires_grad = True)

optimizer = optim.Adam([imgdb], lr=0.1)

# Initialise the loss
criterion = MDFLoss(path_disc, cuda_available=cuda_available)

# Iterate over the epochs optimizing for the noisy image
for ii in range(0,epochs):
    
    optimizer.zero_grad()
    loss = criterion(imgrb,imgdb) 
    print("Epoch: ",ii," loss: ", loss.item())
    loss.backward()
    optimizer.step()

Citing

If using, please cite:

@article{mustafa2021training,
  title={Training a Better Loss Function for Image Restoration},
  author={Mustafa, Aamir and Mikhailiuk, Aliaksei and Iliescu, Dan Andrei and Babbar, Varun and Mantiuk, Rafal K},
  journal={arXiv preprint arXiv:2103.14616},
  year={2021}
}

Acknowledgement

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement N◦ 725253–EyeCode).

Owner
Graphics and Displays group - University of Cambridge
Graphics and Displays group - University of Cambridge
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Tensorflow 2 implementation of our high quality frame interpolation neural network

FILM: Frame Interpolation for Large Scene Motion Project | Paper | YouTube | Benchmark Scores Tensorflow 2 implementation of our high quality frame in

Google Research 1.6k Dec 28, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
Learning View Priors for Single-view 3D Reconstruction (CVPR 2019)

Learning View Priors for Single-view 3D Reconstruction (CVPR 2019) This is code for a paper Learning View Priors for Single-view 3D Reconstruction by

Hiroharu Kato 38 Aug 17, 2022
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,

Phil Wang 123 Nov 17, 2022
Sign Language Transformers (CVPR'20)

Sign Language Transformers (CVPR'20) This repo contains the training and evaluation code for the paper Sign Language Transformers: Sign Language Trans

Necati Cihan Camgoz 164 Dec 30, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023